Reprint Server

Beam Dynamics Characterization and Uncertainties in the Muon g-2 Experiment at Fermilab


The first measurement of the positive muon magnetic anomaly, aμ ≡ (gμ−2)/2, from the Fermi National Accelerator Laboratory (Fermilab) Muon g-2 Experiment (E989) yielded an experimental relative uncertainty of 0.46 ppm, which combined with the previous measurement from the Brookhaven National Laboratory (BNL) Muon g-2 Experiment (E821) differs from the current Standard Model (SM) prediction by 4.2 standard deviations. In contrast to E821, the goal of the experiment at Fermilab is to deliver a measurement of the anomaly to a precision of 0.14 ppm or less in order to reach more than 5σ discrepancy with the SM and, therefore, strongly establish evidence for new physics. In view of this stringent determination, a thorough description of the delivery, storage, and dynamics of the detected muon beam sets the stage for constraining beam-dynamics driven effects to the muon magnetic anomaly at the ppb level. To that extent, this dissertation introduces the background, principles, and beam requirements of E989; elaborates data-driven numerical models of the Beam Delivery System and Muon g-2 Storage Ring at Fermilab; characterizes the linear and nonlinear dynamics of the muon beam in the storage ring; and describes the contributions to the quantification of the largest beam-dynamics systematic corrections and their uncertainties in the experiment derived from this work.

D. A. Tarazona (2021)


Click on the icon to download the corresponding file.

Download Adobe PDF version (35864537 Bytes).

Go Back to the reprint server.
Go Back to the home page.

This page is maintained by Kyoko Makino. Please contact her if there are any problems with it.