Reprint Server

Muon Loss Rates from Betatron Resonances at the Muon g-2 Storage Ring at Fermilab


Abstract

The Muon g−2 Experiment at Fermilab (E989) is directed toward measuring the muon magnetic anomaly, aμ=(g−2)/2, with total statistical and systematic errors of 0.14 ppm. This new measurement will serve as strong probe of effects of as yet undiscovered particles beyond the Standard Model (SM), and perhaps validate or disprove other theoretical models beyond the SM. Of special interest is the reduction of muon losses from the storage ring to achieve the precision needed at the Muon g−2 Experiment. For this purpose, we have developed a detailed and precise symplectic model of the Muon g−2 Storage Ring using COSY INFINITY that considers measured inhomogeneities of the magnetic field; high-order representation of the Electrostatic Quadrupole System (EQS) electrostatic field at different stages of the experiment including fringe fields; injection to the ring based on measurements; and beam collimation. Specifically, we have performed numerical analyses of the rate of muons that are lost before they have a chance to decay for several possible configurations of the EQS in order to find the best possible scenarios that minimize muon losses and understand the resonance mechanisms that contribute to betatron and possibly spin resonances. Additionally, comparisons with measurements have permitted the determination of whether observed resonances come from anticipated features of the g−2 storage ring or from unexpected sources of error whose effect could be detrimental to the precision of E989.


D. Tarazona, M. Berz, K. Makino, Int. Journal of Modern Physics A, 34, 36 (2019) 1942008. DOI: 10.1142/S0217751X19420089


Go Back to the reprint server.
Go Back to the home page.


This page is maintained by Kyoko Makino. Please contact her if there are any problems with it.