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1. Introduction

In this paper we describe a method to stabilize the long-term behavior of
Taylor model-based verified integrators based on preconditioning. As dis-
cussed elsewhere in detail [2], [17], [4], the following advantages have been
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observed when executing the single step by a Taylor model- based integra-
tor. First, the explicit dependency on initial variables is carried through
the whole integration process. This controls the bulk of the dependency
problem very efficiently and hence the main source of the wrapping effect is
eliminated to order n+ 1 for the single step.

On the practical side, the inclusion requirement asserting existence of a
solution reduces to a mere inclusion of the remainder intervals, and differ-
ent from conventional methods based on two separate algorithms for initial
validation by an Euler step and subsequent higher order execution, the en-
tire steps is performed in one algorithm. There is also no need to utilize
additional ODEs for derivatives. Finally, the direct availability of the an-
tiderivation on Taylor models allows to treat the Picard operator like any
other function, avoiding the need to explicitly bound error terms of inte-
gration formulas and leading to a rather straightforward verified fixed point
problem.

The results of the methods developed in [17], [14], [2] can be summarized
in the following theorem.

Theorem 1. (Continuous Dynamical System with Taylor Mod-
els) Let P + I be an n-dimensional Taylor model describing the flow of the
ODE at the time t; i.e. for all initial conditions x0 in the original domain
region B ⊂ Rn, we have

x(x0, t) ∈ I +
⋃

x0∈B
P (x0).

Let P ∗(x0, t) be the invariant polynomial depending on x0 and t obtained in
[2], and assume that the self-inclusion step of the Picard Operator mapping
described there is satisfied over the interval [t, t+∆t] by the remainder bound
I∗. Then for all x0 ∈ B, we have

x(x0, t+ ∆t) ∈ I∗ +
⋃

x0∈B
P ∗(x0, t+ ∆t).

Furthermore, if even x (x0, t) ∈ P (x0) + I, then x (x0, t+ ∆t) ∈ P ∗(x0, t +
∆t) + I∗.

By induction over the individual steps, we obtain a relationship between
initial conditions and final conditions at time t. Thus formally, the continuous
case is made equivalent to the discrete case, for which the respective prop-
erty follows immediately from the respective enclosure properties of Taylor
models, as described for example in [16].
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Theorem 2. (Discrete Dynamical System with Taylor Models)
Let P+I be an n-dimensional Taylor model describing the flow of the discrete
dynamical system xn+1 = f(xn, n), i.e. for all initial conditions x0 in the
original domain region B ⊂ Rn, we have

xn(x0) ∈ I +
⋃

x0∈B
P (x0).

Let P ∗ + I∗ be the Taylor model evaluation of f (P + I, n). Then for all
x0 ∈ B, we have

xn+1(x0) ∈ I∗ +
⋃

x0∈B
P ∗(x0).

Furthermore, if even xn (x0, t) ∈ P (x0) + I, then xn+1 (x0) ∈ P ∗(x0) + I∗.

The two theorems thus allows the verified study of continuous and dis-
crete dynamical systems, provided that the Taylor model arithmetic is per-
formed in a verified manner. In the case of the implementation in COSY
INFINITY, all errors in the floating point coefficients are fully accounted for
[16], [19].

For the purpose of practical efficiency, it is important that the treatment
of the coefficients arithmetic supports sparsity, i.e. only coefficients that
are nonzero (or more specifically, above a pre-specified accuracy threshold
[16], [19]) contribute to computational effort, and different variables can be
carried to different orders [5].

In the following sections we will study another method for the faithful
representation of the verified flow of the ODE, the method of precondition-
ing. We will illustrate the behavior with a large number of examples.

2. Preconditioning the Flow

In this section we will discuss another method to affect the behavior of the
remainder bounds of the solutions of ODEs. The idea is to write the Taylor
model of the solution as a composition of two Taylor models (Pl + Il) and
(Pr+Ir), and then choose Pl+Il in such a way that Il is zero up to roundoff,
and the operations appearing on Ir are minimized so as not to increase the
size of Ir significantly. In a wider context, the Taylor model (Pl + Il) can be
viewed as a specific coordinate system in which the motion is studied. For
practical purposes, in the factorization we impose that (Pr+Ir) is normalized
such that each of its components has a range in [−1, 1]; for purposes of
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numerical stability, it is advantageous that the range is in fact near [−1, 1].
This is achieved by factoring out a linear diagonal transformation containing
scaling factors.

Definition 3. Let (P + I) be a Taylor model. We say that (Pl + Il),
S, and (Pr + Ir) form a factorization of (P + I) if the components of the
range B(Pr + Ir) of Pr + Ir lie in [−1, 1], S is a diagonal linear scaling
transformation, and

(P + I) ∈ (Pl + Il) ◦ S ◦ (Pr + Ir) for all x ∈ D.

Here D is the domain of the Taylor model (P+I). In this case, we call Pl+Il
the preconditioner, S the scaling, and Pr + Ir the conditioned Taylor model.

The composition (P1 + I1) ◦ (P2 + I2) of the Taylor models (P1 + I1) and
(P2 + I2) is here to be understood as insertion of the Taylor model (P2 + I2)
into the polynomial P1 via Taylor model addition and multiplication, and
subsequent addition of the remainder bound I1. For the study of the solutions
of ODEs, the following result is important

Proposition 4. Let (Pl,n+ Il,n)◦Sn ◦ (Pr.n+ Ir,n) be a factored Taylor
model that encloses the flow of the ODE at time tn. Let (P ∗l,n+1, I

∗
l,n+1) be

the result of integrating (Pl,n + Il,n) from tn to tn+1. Then

(P ∗l,n+1, I
∗
l,n+1) ◦ Sn ◦ (Pr,n + Ir,n)

is a factorization of the flow at time tn+1.

Thus the right factor remains unchanged. Considering that in the be-
ginning of the integration, the flow of the initial condition box can be rep-
resented as the composition of two identity Taylor models, this immediately
leads to the obvious but uninteresting case of leaving the right factor as
the identity throughout the integration, which apparently reduces to the
naive Taylor model integration. However, the key to the beneficial use of
the method, and in particular its use in reducing the growth of remainder
terms, lies in moving terms between the left and right factors.

To actually achieve the factorization, the following steps are necessary.
First, observe that according to proposition 4, an inclusion of the flow in a
Taylor model is given by (P ∗l,n+1 + I∗l,n+1) ◦Sn ◦ (Pr.n + Ir,n). Let c∗n+1, C∗n+1

be the constant and linear parts of P ∗l,n+1 and N∗l,n+1 the nonlinear part and
the remainder, so that P ∗l,n+1 = c∗n+1 + C∗n+1 + N∗n+1. We set cl,n+1 = c∗n+1

and assume that Cl,n+1 is the desired linear part of the left factor; more on
useful choices for Cl,n+1 below. We then insert the identity transformation
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(Cl,n+1 ◦ C−1
l,n+1) in front of the parentheses, and thus have an inclusion of

the flow as follows:

(
c∗n+1 + C∗n+1 +N∗n+1

)
◦ Sn ◦ (Pr,n + Ir,n)

= c∗n+1 +
(
C∗n+1 +N∗n+1

)
◦ Sn ◦ (Pr,n + Ir,n)

= cl,n+1 + (Cl,n+1 + [0, 0]) ◦
(
C−1
l,n+1 ◦

(
C∗n+1 +N∗n+1

)
◦ Sn ◦ (Pr,n + Ir,n)

)

= (cl,n+1 + Cl,n+1 + [0, 0]) ◦
{[
C−1
l,n+1 ◦ C∗n+1 + C−1

l,n+1 ◦N∗n+1

]
◦ Sn ◦ (Pr,n + Ir,n)

}
(1)

We now denote the expression in the curly brackets by
(
P ′r,n+1 + I ′r,n+1

)

and determine its component bounds, which produces the scaling matrix
Sn+1. Denoting (Pr,n+1 + Ir,n+1) = S−1

n+1 ◦
(
P ′r,n+1 + I ′r,n+1

)
, we thus have an

enclosure of the flow at tn+1 as

(cl,n+1 + Cl,n+1 + [0, 0]) ◦ Sn+1 ◦ (Pr,n+1 + Ir,n+1).

To analyze the effects of this procedure, the following observations are
crucial:

1. The polynomial part of C−1
l,n+1 ◦N∗n+1 is purely nonlinear, so its action

on Sn◦(Pr,n+Ir,n) via composition only introduces small contributions
to the remainder bound which scale at least quadratically with the
components of Sn+1. Thus for sufficiently small Sn+1, this effect will
be small.

2. The remainder part of C−1
l,n+1 ◦N∗n+1, which contains as one important

contribution the action of C−1
l,n+1 on the remainder interval of N ∗n+1,

will be added to Ir,n. The magnification of the remainder bound of
N∗n+1 by the action of C−1

l,n+1 is proportional to the condition number
of Cl,n+1.

3. Contributions of a similar magnitude as Ir,n come from application of
the linear term C−1

l,n+1◦C∗n+1 to Ir,n. If this term is not chosen properly,
over time, exponential growth of the remainder bound can occur.

We now are ready to consider several choices for the determination of
Cl,n+1. As a first nearly trivial but nevertheless interesting example, we
assume that the polynomial Pl,n represents the identity:
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Definition 5. (Identity Preconditioning) We choose Cl,n+1 as the
identity:

Cl,n+1 = I

This form of preconditioning amounts merely to moving the remainder
error to the right. In the subsequent step, the flow is then computed on
an identity without the presence of a remainder bound, which can lead to
improved performance. This is somewhat reminiscent of the common dis-
tinction between “algorithm 1” and “algorithm 2” of integration approaches
such as those in the code AWA, where “algorithm 1” provides a first enclo-
sure over an interval box enclosing the current flow.

As the first nontrivial but nevertheless quite obvious example, we assume
that the polynomial Pl,n represents the linear flow of the motion.

Definition 6. (Parallelepiped Preconditioning) We choose

Cl,n+1 = C∗n+1

The parallelepiped preconditioning thus has the interesting effect that
the entire constant and linear parts of the flow are described by the left factor
alone; and the nonlinear parts of the motion and remainder bounds will by
accumulated in the right factor. Analyzing the arithmetic more carefully
we see that the term C−1

l,n+1 ◦ C∗n+1 + C−1
l,n+1 ◦N∗n+1 appearing in the square

brackets in eq. 1 plays a crucial role. Its linear part amounts to identity up to
floating point error which leads to very favorable numerics in the subsequent
composition with Sn ◦ (Pr,n + Ir,n).

On the other hand, C−1
l,n+1 is also acting on the nonlinear part and the

remainder bound. However, it is known that in various practical cases of
interest, over long periods of time, Cl,n+1 can become more and more ill-
conditioned; this is for example the case in linear problems where the matrix
of the ODE has distinct real eigenvalues. Since the multiplication of a ma-
trix with an interval vector leads to an overestimation that scales with the
condition number, this effect may lead to a rapid growth of the remainder
bound of the term, and thus in cases of ill-conditioned flow is of limited
value.

The method can be much improved by the following choice of precondi-
tioner:

Definition 7. (Blunted Parallelepiped Preconditioning) We choose
Cl,n+1 to be the q−blunting of C∗n+1, where q is a suitable blunting factor.
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As seen above, the q-blunting provides an upper bound for the condition
number of the matrix Cl,n+1, and thus a strict upper limit to the overestima-
tion obtained when sending the remainder bound interval of N ∗n+1 through
C−1
l,n+1 ◦

(
C∗n+1 +N∗n+1

)
. On the other hand, since a sufficiently small choice

of q only modifies Cl,n+1 in a minor amount, we still have that the linear
part of C−1

l,n+1◦
(
C∗n+1 +N∗n+1

)
is nearly identity, which still favorably affects

the subsequent application to Sn◦(Pr,n + Ir,n) . So a suitable choice of q may
lead to an acceptable overestimation due to the condition number of Cl,n+1

while still providing only limited overestimation in the last step. Examples
of the effect of blunted parallelepiped preconditioning will be given in the
next section.

As another example of preconditioning with a linear transformation, we
consider the following choice

Definition 8. (Curvilinear Preconditioning) Let x(m) = f(x, x′,
..., x(m−1), t) be an m-th order ODE in n variables. Let xr(t) be a so-

lution of the ODE and x′r(t), ..., x
(k)
r (t) its first k time derivatives. Let

e1(t), ..., el(t) be l unit vectors not in the span of x′r(t), ..., x
(k)
r (t) such that

X = (x′r(t), ..., x
(k)
r (t), e1(t), ..., el(t)) have maximal rank. Then we call the

Gram-Schmidt orthonormalization of X a curvilinear basis of depth k, and
we refer to its use for preconditioning as curvilinear preconditioning.

The basis introduced in the last definition is a generalization heuristically
found specific choices of coordinates for particular cases that have been used
in various disciplines. A special case of curvilinear coordinates is used in
the study of the six dimensional dynamics of an object in the solar system,
and for the last 50 years in the six-dimensional dynamics in large particle
accelerators. For a treatment of their properties in the latter case, see [1], and
[14] as well as [15]. As an aside, we note that it is possible to even preserve
Hamiltonian structure in the transformation to curvilinear coordinates[14],
[3], which is important for long term integration using symplectic methods
as in [6] and [7].

Example 9. (Curvilinear Coordinates for the Solar System and
Particle Accelerators) In this case, m = 2, n = 3, and one usually chooses
k = 2. The first basis vector points in the direction of motion of the reference
orbit. The second vector perpendicular to it points approximately to the sun
or the center of the accelerator. The third vector is chosen perpendicular to
the plane of the previous two.

Of particular interest for our study of long-term error growth is the
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following case:

Theorem 10. (Curvilinear Coordinates for Autonomous Linear
Systems) Let x′ = A · x be an n-dimensional linear system that has n
distinct nonzero eigenvalues λi with eigenvectors ai. Let B be a box with
nonzero volume, and xr =

∑n
i=1Xiai ∈ B such thatXi 6= 0 for all i = 1, ..., n.

Then the derivatives of x
(i)
r , i = 1, ..., n, are linearly independent, and hence

curvilinear coordinates of depth n can be obtained by applying the Gram-

Schmidt procedure to the derivatives x
(i)
r , i = 1, ..., n.

Proof. The motion of the reference point xr as a function of time is
apparently given by

xr(t) =
n∑

i=1

Xi · ai · exp(λit)

so that the jth derivative assumes the form

x(j)
r (t) =

n∑

i=1

Xi · ai · λji exp(λit).

We now consider the determinant of the matrix of coefficients in the basis
ai, and observe

det




X1λ1 X1λ
2
1 X1λ

n
1

X2λ2 X2λ
2
2 X2λ

n
2

. . .

Xnλn Xnλ
2
n Xnλ

n
n




=
n∏

i=1

(λiXi) · det




1 λ1
1 λn−1

1

1 λ1
2 λn−1

2
. . .

1 λ1
n λn−1

n


 =

n∏

i=1

(λiXi)
∏

i>j

(λi − λj) 6= 0

because of the well-known property of the Vandermonde matrix.

Definition 11. (Natural Coordinate System for Linear System)
Let x′ = A · x be an n-dimensional linear system that has n distinct real
eigenvalues λ1 > λ2 > ... > λn with eigenvectors a1, ..., an. We define the
normal basis (bi) of the system to be the result of applying the Gram-Schmidt
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orthonormalization procedure to the vectors a1, ..., an, i.e. the result of the
recursive computation

bi =
ai −

∑i−1
j=1 bj · (ai · bj)∣∣∣ai −

∑i−1
j=1 bj · (ai · bj)

∣∣∣
.

The Natural Coordinate System has the property that as time progresses,
the motion is pulled most towards the vector b1, and then towards b2, and
so on.

Proposition 12. (Curvilinear Coordinates for Autonomous
Linear Systems) Let x′ = A · x be an n-dimensional linear system that
has n distinct real eigenvalues λi with eigenvectors ai. Let bi be the natu-
ral coordinate system of the linear system. Let B be a box with nonzero
volume, and xr =

∑n
i=1Xiai ∈ B such that Xi 6= 0. If xr is used as the

reference orbit to define the curvilinear coordinates ci, then the curvilinear
coordinates converge to the natural coordinates, i.e. we have

ci → bi for all i as t→∞.

Proof. The derivatives of the motion of the reference point xr as a func-
tion of time of order 0 and higher are apparently given by

x(j)
r (t) =

n∑

i=1

Xi · ai · λji exp(λit).

Because of the ordering of the eigenvectors by size, we clearly have c1 =
x′r(t)/|x′r(t)| → b1 as t → ∞. Since c2 is perpendicular to c1, we thus also
have that c2 · b1 → 0 as t→∞, and so limt→∞ c2 is in the span of b2, ..., bn.
Because in this subspace, the coefficient exp(λ2t) is dominating, we even
have c2 → b2 as t → ∞. In a similar fashion we obtain iteratively that
cj → bj as t→∞.

Remark 13. Variations of these arguments are obviously possible to
treat the case of complex eigenvalues. In this case, the “natural” generaliza-
tion of the natural coordinate system has two non-uniquely defined vectors
in the subspace belonging to the conjugate pair of eigenvalues.

Remark 14. (Depth of Curvilinear Coordinates) One may won-
der about the significance of the depth of curvilinear coordinates chosen, i.e.
the number of derivatives employed. As long as the first k eigenvectors are
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of larger magnitude than the subsequent ones, then the subspace spanned
by the first k derivatives will be asymptotically dominating over the remain-
ing subspace, and thus the detailed choices of subsequent basis elements are
insignificant as long as the basis matrix remains well-conditioned.

Definition 15. (QR Preconditioning) We choose Cl,n+1 to be the
matrix Q of the QR factorization of the matrix obtained by sorting the
columns of C∗n+1 by size in descending order.

So the matrix Cl,n+1 is chosen in the same fashion as originally proposed
by Lohner [9], [10], [8], [11], [12], [13]. Different from his algorithm, also
the Taylor model describing the linear and nonlinear parts of the motion
is expressed in this coordinate system. This entails that the coefficients of
this polynomial are subjected to smaller coordinate transformations, which
leads to reduced roundoff errors. And of course, the transformations relating
initial and final conditions are not merely linear, but nonlinear.

Like the curvilinear preconditioning method, the QR preconditioning
leads to a coordinate system that is orthogonal, and thus the transformation
in and out of this system is computationally benign because of the favor-
able condition number of the system. However, there are more similarities
between curvilinear preconditioning and QR preconditioning:

Proposition 16. (QR Coordinates for Autonomous Linear Sys-
tems) Let x′ = A · x be an n-dimensional linear system that has n distinct
nonzero eigenvalues λi with eigenvectors ai. Let bi be the natural coordinate
system of the linear system and ci the basis vectors of the QR coordinate
system. Then we have

ci → bi for all i as t→∞.

The proof follows from the arguments developed in the work of Nedialkov
and Jackson [18]. As a consequence, we obtain that for the important case
of linear autonomous systems, the asymptotic behavior of the QR method
and the curvilinear method are identical.

To illustrate the performance of the curvilinear (CV) and QR precondi-
tioning, both of which provide orthogonal coordinate systems in which the
motion is studied, let us consider the example of the simple linear ODE
x′1 = x1, x

′
2 = x1. It has distinct eigenvalues ±1 , and the eigenvector be-

longing to the larger eigenvalue +1 is (1, 1), thus asymptotically, the motion
is “pulled” towards this eigenvector. Figure 1 shows that in the CV precon-
ditioning, one of the coordinate axes is attached to the direction of motion,
and thus the axis will eventually line up with the vector (1, 1). In the case of
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Figure 1: Preconditioning coordinate systems for the ODE x′1 = x2,
x′2 = x1. Left: curvilinear, right: QR

the QR preconditioning, where one of the vectors is always attached to the
longer domain box, the motion is less regular but leads to the same asymp-
totic behavior, since eventually also the direction of main elongation of the
solution set aligns itself with the direction of motion.

For the purpose of a nonlinear example, we use the Volterra ODE and ini-
tial conditions studied in [17]. Figures 2 and 3 shows the coordinate systems
for the case of the curvilinear preconditioning and the QR preconditioning,
respectively. The curvilinear coordinate system performs a full rotation by
2π upon return to the initial condition by virtue of the fact that after one
full period, necessarily also the direction of the tangent to the orbit is re-
produced exactly. The coordinate system used by the QR method is less
regular, and it can be seen that after one revolution of the center point, the
coordinate system is not rotated by 2π. The long-term success of the QR
method rests on the ability to asymptotically produce rotations by 2π for
each revolution of the reference point, since any persistent lag in angle will
produce linear wrapping. In nonlinear systems, it is not a priori clear that
this condition must always be satisfied.
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Figure 2: Preconditioning coordinate systems for the Volterra equa-
tions by the curvilinear method.
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Figure 3: Preconditioning coordinate systems for the Volterra equa-
tions by the QR method.
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3. Example: The Performance of Preconditioning

In this section we will study various aspects of the performance of the pre-
conditioning method for the Roessler equation

x′ = −(y + z)

y′ = x+ 0.2 · y
z′ = 0.2 + z · (x− a)

for the specific value a = 5.7, for which numerical simulation suggests the
existence of a strange attractor. We consider the integration of the relatively
large cube

(x, y, z) = (0,−8.38095, 0.0295902) + [−0.2, 0.2]3

for various choices of the integration order for approximately one full rev-
olution, which is sufficient to assess the dynamical behavior of the system
and corresponds to integration from t = 0 to about t = 6. We employ auto-
matic step size control to minimize the total error. Figure 4 illustrates the
enclosures of the y − z projections of the flow obtained by Lohner’s code
AWA (top) and by COSY-VI (bottom). The top picture shows rapid infla-
tion of the box enclosure, resulting in breakdown of the method in a short
time. The bottom picture shows center cuts in x direction through the three
dimensional Taylor models, as well as box enclosure of the full three di-
mensional Taylor model. It can be seen that AWA produces overestimation
rather quickly, but COSY-VI can successfully integrate even rather initial
large boxes. Specifically, COSY-VI can transport boxes of a volume more
than 1000 times larger than what AWA is able to handle.

Figure 5 shows the total number of steps for the integration of the cube
(x, y, z) = (0,−8.38095, 0.0295902) + [−0.1, 0.1]3. For orders beyond ten,
the integration can be carried out in about 100 steps. Next we study the
required CPU time. Figure 6 shows the CPU time required as a function
of order. To avoid very small step sizes, the minimum step size was set to
be 0.0001. For low orders the CPU time is large, but it is even suppressed
because of the minimum step size requirement, then the CPU time reaches
a minimum of about 3 sec for order 8. For higher orders, the CPU time
increases because of the increased complexity of the underlying Taylor model
operations. Finally we address the resulting accuracy, measured in terms of
the width of the resulting remainder bound at t = 6. Figure 7 shows the
width of the remainder bound interval of the Taylor model for the flow of
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Figure 4: Projection into the y − z plane for enclosures for the flow
of an initial box of width 0.4 by AWA (top) and COSY-VI (bottom).
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Figure 5: Total number of steps chosen by the automatic step size
controller of COSY-VI as a function of order for the verified integra-
tion of a cube of width 0.2 through the Roessler equations.

the cube of width 0.2 at t = 0.6. The error decreases with order, and from
about order 15 reaches a level below 10−10, a very small fraction of the size
of the cube. The comparison of figures 6 and 7 allows balancing speed versus
accuracy for the specific requirements of the integration.
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Figure 6: Total CPU time required on a 2 GHz Pentium III processor
for integration of a cube of width 0.2 for one revolution through the
Roessler equations.
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Figure 7: Error after one revolution of the verified integration of a
cube of width 0.2 through the Roessler equation.
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4. Linear Autonomous Examples

In this section, we will address the behavior of linear problems that may
become ill-conditioned and forgo the study of nonlinear effects. Because lin-
ear problems lead to a merely linear dependence on initial conditions, they
thus allow a clear separation of the effects of the Taylor model methods that
are due to the expansion in initial conditions and those of their asymptotic
behavior. We consider both autonomous problems, the asymptotic behav-
ior of which can apparently also be studied more efficiently with verified
eigenvalue/eigenvector tools, as well as a specific case of a non-autonomous
problems. Both of these cases allow to devise certain challenges for verified
integrators, and thus represent a sine qua non.

We begin the analysis of the behavior of the various methods by study-
ing discrete dynamics of iteration through two-dimensional matrices. To
minimize the influence of particular choice, we consider a collection of 1000
matrices with coefficients randomly chosen in the interval [−1, 1]. The ini-
tial condition under study is chosen to be (1, 1) + d · [−1, 1] with a value
of d = 10−3. Apparently the choice of the center point of the domain box
is rather immaterial due to the randomness of the matrices; and because of
linearity, the value of d is of importance only relative to the floor of precision
of the floating precision environment.

In all cases, we study the development of the area of enclosure as a mea-
sure of the sharpness of the method. We compare preconditioning the Taylor
models by the blunted method (TMB), the parallelepiped method (TMP),
and the QR method (TMQ). In this linear scenario, the TMB method also
describes the effects of the blunted shrink wrapping method discussed in [5],
which in this case also reduces to sending the remainder term through the
blunted linear matrix. We chose the blunting factors qi to be 10−3 times
the length of the longest column vector of the linear matrix. In order to
provide a frame of reference, we also study the performance of naive interval
(IN) method as well as the naive Taylor model method (TMN); in the latter
case, the area is estimated as the sum of the determinant of the linear part
plus the area of the remainder bound interval box. In addition, in order to
provide an assessment of the influence of the effects of the underlying float-
ing point arithmetic, we also perform a non-verified tracking of the vectors
of the four corner points (1, 1) + d · (±1,±1) and determine the area of the
linear structure spanned by the vectors; this method is referred to as the
vector method (VE). Since this method is naturally inaccurate in particular
for strongly elongated structures, we average over a large number of matrices
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to control statistical fluctuations.

In the first test, we study an autonomous problem for 500 iterations.
Apparently in this case, the true solution of the problem shows an expo-
nential shrinkage of the area by the product |λ1|· |λ2| of the magnitudes of
the eigenvalues. For the purpose of analysis, we group the matrices in six
categories; the category C1 contains all matrices in which the eigenvalues
form conjugate pairs. The other matrices are sorted into categories based
on the ratios r = |λ1|/|λ2| of the eigenvalue λ1 of larger magnitude to the
one of smaller magnitude. Specifically we consider the categories C2 with
1 ≤ r < 5, C3 with 5 ≤ r < 10, C4 with 10 ≤ r < 20, C5 with 20 ≤ r < 50,
and C6 with 50 ≤ r. The numbers of matrices in categories C1 through
C6 are 325, 520, 80, 40, 18, and 17. Within each category, we calculate the
average of the logarithm of the areas enclosed by the various methods as a
function of the iteration number, which for the true dynamics would lead
to a decrease along a straight line, the slope of which is given by the value
log (|λ1| · |λ2|) .

Figure 8 shows the results of the situation for categories C1 and C2. It is
clearly visible that in the dynamics of C1, the behavior is characterized by
the expected linear decrease, and the blunted (TMB), parallelepiped (TMP),
and QR method (TMQ) all show this behavior. All three of these methods
very closely follow the non-verified result (VE), with a closer inspection
showing that the TMB and TMP methods provide enclosures about 1 to 2
orders of magnitude sharper than the TMQ method. The behavior of the
methods is in agreement with the theoretical results and practical examples
found in [18]. On the other hand, the naive interval method (IN) as well
as the naive Taylor model method (TMN) show a qualitatively different
behavior; the interval method leads to a different slope, while over the short
term the naive Taylor model method performs similar to the other methods
until the size of the remainder bound becomes the dominating contribution,
at which time its slope becomes similar to that of the interval method.

Studying the behavior of the class C2 shows a similar pattern, except
that now the TMB and TMQ methods provide indistinguishable sharpness,
while the parallelepiped method now performs markedly worse. This is due
to the unfavorable conditioning of the TMP approach that does not appear
in the TMQ approach.

Studying the behavior in the classes C3 and C4 shown in figure 9 reveals
again that the TMB and TMQ methods perform virtually indistinguishable,
and both of them follow the non-verified result VE very closely. Furthermore,
the naive Taylor model method TMN and the parallelepiped method TMP
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both perform quite similar to each other, but substantially worse than the
TMB and TMQ methods.

However, another interesting effect appears. We notice that there is a
marked change in the slope of the curve after somewhere around n = 20
iterations for the C3 case and n = 15 iterations for the C4 case. This is
attributed to the fact that after this number of iterations, the quantity rn

reaches around 1017, and thus the ratio of the elongations of the solution do-
main in the directions of the eigenvectors v1 and v2 reaches the limit of what
can be represented in a double precision floating point environment. Before
this value of n, the computed volume decreased by λ1 · λ2 at each iteration,
but after this n, the apparent “thickness” of the needle-like structure will be
determined by the floating point accuracy ε times the length of the needle.
Thus any decrease in volume is merely due to the decrease of the needle’s
length, which is governed by the eigenvalue of smaller magnitude λ2, and
so the subsequent volume decrease is given by λ2

2. Thus one is bound to
observe a jump in slope of about the factor r.

Thus we observe that in the process of floating point errors, the long-
term behavior of the area is predicted qualitatively wrong, and thus does
not follow the predictions of [18] for the infinite precision case anymore.
However, it is most noticeable that this effect does not only appear within
the verified setting, but just in the same way in the non-verified case. In
the latter case, the perceived “thickness” of the needle is merely given by
floating point rounding errors that prevent the four corner points from being
collinear, where again the deviation from collinearity being given by the ε
times the length of the respective vectors, which leads to a perceived area
very similar to that in the verified case. This observation appears most
important, since it stresses that the spurious exponential growth observed
compared to the true result is an unavoidable consequence of the floating
point environment per se and has nothing to do with the attempt to do
verified computation.

The situation for the cases of C5 and C6 are similar to those of the C3

and C4 cases, except that as expected the change in slopes appears earlier
and is more pronounced.
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Figure 8: Areas predicted in the iteration through random 2× 2 ma-
trices with conjugate eigenvalues (top) and eigenvalues differing in
magnitude by a factor of 1 to 5 (bottom) for various enclosure meth-
ods.
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Figure 9: Areas predicted in the iteration through random 2× 2 ma-
trices with eigenvalues differing in magnitude by a factor between 5
and 10 (top) and between 10 and 20 (bottom) for various enclosure
methods.
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5. Linear Non-Autonomous Examples

As another set of test cases, we want to perform a limited study of non-
autonomous linear systems. This case is interesting because the quantitative
analysis of the behavior of the QR methods undertaken in [18] does not hold
in this case, and as already observed by Kühn, spurious exponential error
growth is possible; thus a comparison to the TMB method is worthwhile.

For the purposes of our non-autonomous study, we merely iterate through
the 1000 random matrices for 10 iterations, and follow these by iterating
through the approximate floating point inverses of the respective matrices
for the next 10 iterations, repeating this procedure a total of 25 times. The
overall transformation reaches the identity after each 20 steps, and thus
the analysis of the performance is straightforward. Figure 10 shows the
behavior of the various methods for the case of conjugate eigenvalues and
the case 1 ≤ q < 5; it is clearly seen that the naive interval (IN) and the
naive Taylor model (TMN) methods lead to overestimation rather quickly.
For the purpose of better readability, in figure 11 we show the enclosure
area only after every 20 steps, at which point the overall transformation
reaches identity. It can be seen that the TMB (and the TMP) methods
reproduce the correct result to printer resolution, while the TMQ method
reaches an overestimation of two orders of magnitude. For the case 1 ≤ r <
5, which is more favorable to the QR approach, again the TMB (and the
TMP) method produce very little overestimation, while the TMQ method
has about one order of magnitude of overestimation. For larger values of
r, the advantage of the TMB method becomes less pronounced but is still
one order of magnitude, while the TMP method begins to produce larger
overestimations, as can be seen in figures 12 for the cases of 5 ≤ r < 10 and
10 ≤ r < 20.
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Figure 10: Predicted areas for 10 forward and 10 backward iterations
through random 2×2 matrices with conjugate eigenvalues (top) and
eigenvalues differing in magnitude by a factor of 1 to 5 (bottom) for
various enclosure methods.



24 K. Makino, M. Berz

-6

-4

-2

0

2

4

0 100 200 300 400 500

lo
g_

10
(M

ea
n)

Step Number (showing every 20th step)

IN
TMN
TMP
TMQ
TMB
VE

-6

-4

-2

0

2

4

0 100 200 300 400 500

lo
g_

10
(M

ea
n)

Step Number (showing every 20th step)

IN
TMN
TMP
TMQ
TMB
VE

Figure 11: Predicted areas for groups of 10 forward and 10 backward
iterations through random 2×2 matrices with conjugate eigenvalues
(top) and eigenvalues differing in magnitude by a factor between 1
and 5 (bottom) for various enclosure methods. Results shown after
each set of 20 steps.
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Figure 12: Predicted areas for groups of 10 forward and 10 backward
iterations through random 2 × 2 matrices with eigenvalues differing
in magnitude by a factor between 5 and 10 (top) and 20 and 50
(bottom) for various enclosure methods. Results shown after each
set of 20 steps. The blunted method (TMB) outperforms the QR
method.
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6. Linear Continuous Examples

As another example for the use of preconditioning tools for linear problems,
we study some continuous problems and compare the behavior of the QR
preconditioning method with the curvilinear (CV) preconditioning methods.
We study an ensemble of 4x4 matrices with random elements in [−1, 1], and
determine verified solutions of the linear homogeneous ODE

r′ = A · r

over the time domain [0, 10] for initial domain box r+ [−.1, .1]4 where r is a
vector with random number entries.

We study the details of the situation for one particular matrix A1 of the
form

A1 =




+0.9564 +0.2004 +0.4826 +0.8871
−0.4922 +0.5651 −0.1474 −0.7678
−0.0269 −0.8587 −0.3785 −0.6168
−0.8271 +0.2661 −0.9380 +0.5289




and approximate eigenvalues 0.3928, −0.3911, 1.005 ± 0.8669i as well as
for a set of 10 random matrices. The matrix A1 was selected because it
has positive, negative, and complex conjugate eigenvalues, and the complex
conjugate pair is even dominating in magnitude. The random center point of
the initial domain box was approximately (0.6446, 0, 0050,−0.2394, 0.4581).
The other matrices were studied to give confidence that what is observed is
not an isolated case.

The top picture in figure 13 shows the effects of QR and CV precon-
ditioning for the specific case A1. Note that both remainder estimates are
increasing exponentially, which is due to the fact that the magnitude of the
leading eigenvalues, those that form the complex conjugate pair, exceeds
unity. Apparently the two methods behave very similarly, where in the very
beginning the QR preconditioning provides results that are sharper by about
a factor of 2. Note that there is an oscillatory pattern visible, which is due
to the fact that two of the four eigenvalues of the matrix form a complex
conjugate pair, resulting in some oscillatory motion in one of the invariant
subspaces of the matrix.

An attempt of a quantitative analysis of the figure shows that after the
initial period of rapid error growth, which is due to the proximity of the
floating point accuracy floor, the function rises exponentially from 10−11 at
t = 3 to 10−7 at t = 10, which corresponds to a gain of 104/7 ≈ 10.5715 per
time unit. On the other hand, the magnitude of the complex eigenvalue is
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approximately 1.327, leading to a gain of exp (1.327) ≈ 3.769 ≈ 100.5763 per
time unit. So we see that to very good approximation, the growth in the
remainder error matches the growth of the parallelogram enclosing the flow
of the initial domain box or the corner points thereof, which is the behavior
observed in a non-verified integrator.

To conclude the discussion of linear the study of linear problems with
preconditioning, we summarize the observed behavior of the methods:

1. For iteration through identical matrices, which corresponds to study of
autonomous systems, the Blunted Method and the QR method have
the same asymptotic behavior and error growth as the non-verified
method. On the other hand, the naive interval method, the paral-
lelepiped method, and the naive Taylor model produce overestimations
that grow exponentially.

2. For iteration through sets of matrices and their inverses, which cor-
responds to a periodic non-autonomous system, the blunted and the
parallelepiped methods perform superior to the QR method, which in
turn is superior to the naive interval and naive Taylor model methods.
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Figure 13: The size of the interval remainder errors for 4 × 4 linear
systems as determined using QR and CV preconditioning. Averages
of the errors of the four components for the matrix A1 (top) and
averages of those of 10 random matrices (bottom).
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7. Example: A Muon Cooling Ring

In this section we study a problem from the field of beam physics and illus-
trate the use of curvilinear coordinates. We use a simple model of a muon
cooling ring, the purpose of which is to reduce the size of a beam by passing
it through material and simultaneously accelerating it. Specifically, the par-
ticles are held in a confined orbit by a homogenous magnetic field in vertical
direction; for reasons of simplicity, we restrict the dynamics to lie only in
the plane. The coordinates describing the motion are the Euclidean x and
y, and the corresponding momenta px and py.

The particles are moving in homogenous matter, which provides a decel-
eration force of magnitude α along their direction of motion; the direction

of motion is given by (px, py)/
√
p2
x + p2

y. Furthermore, there is an azimuthal

acceleration force of equal magnitude α and opposite direction. For particles
at coordinates (x, y), the azimuthal direction is given by (y,−x)/

√
x2 + y2.

Altogether, the equations of motion are

ẋ = px

ẏ = py

ṗx = py −
α√

p2
x + p2

y

· px +
α√

x2 + y2
· y

ṗy = −px −
α√

p2
x + p2

y

· py −
α√

x2 + y2
· x (2)

It can be easily verified that the system has an invariant solution

(x, y, px, py)I(t) = (cos t,− sin t,− sin t,− cos t),

which represents a clockwise rotation in the horizontal plane with constant
radius 1 and constant momentum 1. The practically significant property of
the system is that acceleration always happens azimuthally, while decelera-
tion happens in the direction of motion; this leads to a decrease of the radial
component of the momentum, and mathematically to the fact that solutions
of the ODE asymptotically approach circular motion of the form

(x, y, px, py)a(t) = (cos (t− φ) ,− sin (t− φ) ,− sin (t− φ) ,− cos (t− φ)),

where φ is a characteristic angle of the particle in question. For practical
applications, this is eminently useful, as it reduces the volume of the four
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dimensional space of values (x, y, px, py), an effect known as cooling. While
in practice, many technical details have to be considered, the simple ODE
(2) represents the essence of this process.

For the purpose of using the problem as a test case for verified integra-
tion, the following aspects are important

1. It is important to treat a large initial domain box of a range of [−10−2,
10−2]4. This will entail the presence of rather strong nonlinearities.

2. Because of the transversal damping action towards the invariant limit
cycle, the linear part of the motion will be more and more ill-conditioned.

We study the dynamics using COSY-VI using curvilinear precondition-
ing, which is standard in beam physics simulations (see for example [14],
[1] and references therein). We perform the integration until no further
reduction in phase space can be performed due to the proximity of the float-
ing point floor. Figure 14 shows the effects of cooling for domain boxes
(0, 1, 1, 0)+ [−d, d]4 for d = 10−2, 10−4, and 10−6; the value of 10−2 approx-
imately corresponds to the practical needs.

Studying the magnitude of the determinants of the linear part, which
roughly correspond to the volume, we see that cooling happens exponentially
and with nearly the same speed in all three cases. The final volume that is
attained is larger for the larger initial volumes, which is due to the fact that
volume gets compressed only transversely to the motion of the beam, while
nothing affects the particle’s longitudinally motion. Thus for larger initial
boxes, the final box in the direction of motion will be larger.

As a result, we obtain a very narrow elongated structure with nearly
vanishing radial thickness that rotates around a circle. As a consequence,
the condition number of the linear part becomes larger and larger, as shown
on the right of figure 14. If not treated properly, computationally this may
represent a significant challenge, but as expected, the curvilinear precondi-
tioning can overcome this difficulty. To study the motion in detail, we look at
the remainder bounds of the dynamics, which are shown in figure 15. Over-
all, we see that COSY-VI has no difficulty performing the integration of the
muon damping system with d = 10−2 for ten revolutions, which is sufficient
to perform the required damping task. On the other hand, the linear code
AWA can only succeed with this task for d = 10−4. Thus a full simulation of
the necessary space of initial conditions, which can be performed with one
run of COSY-VI, would require approximately

(
102
)4

= 108 runs of AWA.
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8. Example: The Discrete 2D Circular Kepler Problem

This system describes the dynamics of circular Kepler orbits around a central
mass in terms of the variables (x, y) in the plane of the motion. It is well
known from Kepler’s third law that the periods T and large semi-major axes
a of a Kepler ellipse are related via T 2 = k · a3, where k is determined by
the mass of the central object. For circular orbits of radius r, for k = 1
this entails an angular velocity of ω = 2π/T = 2π · r−3/2, which means that
the transformation by a fixed time step ∆t is given by the two-dimensional
transformation

(
xn+1

yn+1

)
=

(
cos ∆φ sin ∆φ
− sin ∆φ cos ∆φ

)(
xn
yn

)

where ∆φ =
2π∆t

(x2 + y2)3/4
.

While addressing only circular motion, the dynamics is also quite character-
istic of the general motion of Kepler ellipses because it captures one of the
main effects: as time progresses, there is a larger and larger lag between the
circles of different radii r. This lag makes Taylor expansion of final condition
in terms of initial conditions impossible for sufficiently large times, and thus
represents a challenge for all Taylor-based methods that will necessarily lead
to their eventual failure. The interest in the problem now lies in the attempt
to delay failure.

Figure 16 show the remainder bounds of the study of the dynamics with-
out shrink wrapping for repeated application of the discrete transformation
with φ0 = π/4, in which case one full revolution, or one cycle, consists of
eight applications of the individual map.

We study three cases: as a reference we use first order Taylor models pre-
conditioned by curvilinear coordinates, which behave similar to the PEQR
method. We compare with tenth order Taylor models preconditioned by
curvilinear coordinates, and tenth order Taylor models preconditioned by
the QR method. The growth of the remainder bounds is shown for four
different initial domain widths of 10−6, 10−8, 10−10, and 10−12 as a function
of full cycles of 2π. It can be seen that for each case, the tenth order Taylor
model method survives between 7 and 10 times longer than the first order
method. Furthermore, the preconditioning by curvilinear coordinates leads
to a slightly better performance, which is attributed to the fact that the
movement of the coordinate system is smoother since it follows the reference
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Figure 16: Dynamics in the discrete 2D Kepler system for initial box
sizes widths of 10−6 (top left), 10−8 (top right), 10−10 (bottom left)
and 10−12 (bottom right). Shown are the remainders obtained by
the first and tenth order Taylor method using Curvilinear Precondi-
tioning and QR preconditioning.

orbit instead of the somewhat more random orientation of the longest edge.

It is also interesting to estimate the growth rate of the remainder bounds
in the high-order TM methods. An inspection of the bottom right picture in
figure 16 reveals that during revolutions 1000 and 6000, the remainder width
increases from about 10−10 to about 10−9, for a total increase of 9 ·10−9 over
5, 000 revolutions or 40, 000 iterations. This corresponds to about 2 · 10−13

per map iteration; considering that each iteration requires several function
evaluations, and that in our current implementation, intrinsic functions carry
an overestimation of around 10 ulps, this number is very close to the un-
avoidable consequences of accounting for the mere floating point errors of
the arithmetic involving the constant part of the Taylor model.
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