The field of beam physics touches many areas of physics, engineering and the sciences. In general terms, beams describe ensembles of particles with initial conditions similar enough to be treated together as a group so that the motion is a weakly nonlinear perturbation of a chosen reference particle. Particle beams are used in a variety of areas, ranging from electron microscopes, particle spectrometers, medical radiation facilities, powerful light sources and astrophysics to large synchrotrons and storage rings such as the LHC at CERN.

An Introduction to Beam Physics is based on lectures given at Michigan State University’s Department of Physics and Astronomy, the online VUBeam program, the U.S. Particle Accelerator School, the CERN Academic Training Programme and various other venues. It is accessible to beginning graduate and upper-division undergraduate students in physics, mathematics and engineering. The book begins with a historical overview of methods for generating and accelerating beams, highlighting important advances through the eyes of their developers using their original drawings. The book then presents concepts of linear beam optics, transfer matrices, the general equations of motion and the main techniques used for single- and multi-pass systems. Some advanced nonlinear topics, including the computation of aberrations and a study of resonances, round out the presentation.

Features
- Provides an introduction to the physics of beams from a historical perspective
- Describes the production, acceleration and optics of beams
- Discusses transfer matrices and maps for particle accelerators and other weakly nonlinear dynamical systems
- Covers various important devices used for imaging and repetitive systems, including electron microscopes, spectrometers and storage rings
- Incorporates some advanced material such as aberration integrals and the treatment of resonances

An Introduction to Beam Physics

Martin Berz, Kyoko Makino and Weishi Wan
An Introduction to
Beam Physics
Series in High Energy Physics, Cosmology, and Gravitation

Series Editors:
Brian Foster, Oxford University, UK
Edward W Kolb, Fermi National Accelerator Laboratory, USA

This series of books covers all aspects of theoretical and experimental high energy physics, cosmology and gravitation and the interface between them. In recent years the fields of particle physics and astrophysics have become increasingly interdependent and the aim of this series is to provide a library of books to meet the needs of students and researchers in these fields.

Other recent books in the series:

The Standard Model and Beyond
P. Langacker

Particle and Astroparticle Physics
U. Sakar

Joint Evolution of Black Holes and Galaxies
M. Colpi, V. Gorini, F. Haardt, and U. Moschella (*Eds*)

Gravitation: From the Hubble Length to the Planck Length
I. Ciufolini, E. Coccia, V. Gorini, R. Peron, and N. Vittorio (*Eds*)

Neutrino Physics
K. Zuber

The Galactic Black Hole: Lectures on General Relativity and Astrophysics
H. Falcke and F. Hehl (*Eds*)

The Mathematical Theory of Cosmic Strings: Cosmic Strings in the Wire Approximation
M. R. Anderson

Geometry and Physics of Branes
U. Bruzzo, V. Gorini, and U. Moschella (*Eds*)

Modern Cosmology
S. Bonometto, V. Gorini, and U. Moschella (*Eds*)

Gravitation and Gauge Symmetries
M. Blagojevic

Gravitational Waves
I. Ciufolini, V. Gorini, U. Moschella, and P. Fré (*Eds*)

Neutrino Physics, Second Edition
K. Zuber
An Introduction to Beam Physics

Martin Berz
Michigan State University
East Lansing, Michigan, USA

Kyoko Makino
Michigan State University
East Lansing, Michigan, USA

Weishi Wan
Lawrence Berkeley National Laboratory
Berkeley, California, USA
Contents

1 Beams and Beam Physics
1.1 What Is Beam Physics? ... 1
1.2 Production of Beams .. 4
1.2.1 Electron Sources ... 4
1.2.2 Proton Sources .. 8
1.2.3 Ion Sources .. 9
1.3 Acceleration of Beams .. 10
1.3.1 Electrostatic Accelerators 12
1.3.2 Linear Accelerators .. 15
1.3.3 Circular Accelerators 19

2 Linear Beam Optics .. 31
2.1 Coordinates and Maps ... 32
2.2 Glass Optics .. 36
2.2.1 The Drift .. 37
2.2.2 The Thin Lens .. 37
2.2.3 The Thin Mirror .. 40
2.2.4 Liouville’s Theorem for Glass Optics 41
2.3 Special Optical Systems 43
2.3.1 Imaging (Point–to–Point, ⋅ ⋅) Systems 44
2.3.2 Parallel–to–Point (∥ ⋅) Systems 45
2.3.3 Point–to–Parallel (⋅ ‖) Systems 46
2.3.4 Parallel–to–Parallel (∥ ‖) Systems 47
2.3.5 Combination Systems 48

3 Fields, Potentials and Equations of Motion 49
3.1 Fields with Straight Reference Orbit 50
3.1.1 Expansion in Cylindrical Coordinates 50
3.1.2 Quadrupole Fields ... 53
3.1.3 Sextupole and Higher Multipole Fields 54
3.1.4 s–Dependent Fields 55
3.2 Fields with Planar Reference Orbit 57
3.2.1 The Laplacian in Curvilinear Coordinates 57
3.2.2 The Potential in Curvilinear Coordinates 58
3.3 The Equations of Motion in Curvilinear Coordinates 60
3.3.1 The Coordinate System and the Independent Variable 60
3.3.2 The Equations of Motion 65
Contents

4 The Linearization of the Equations of Motion 67

4.1 The Drift 69

4.2 The Quadrupole without Fringe Fields 70
 4.2.1 The Electric Quadrupole 70
 4.2.2 The Magnetic Quadrupole 72

4.3 Deflectors 73
 4.3.1 The Homogeneous Magnetic Dipole 73
 4.3.2 Edge Focusing 76
 4.3.3 The Inhomogeneous Sector Magnet 82
 4.3.4 The Inhomogeneous Electric Deflector 83

4.4 Round Lenses 87
 4.4.1 The Electrostatic Round Lens 89
 4.4.2 The Magnetic Round Lens 97

4.5 *Aberration Formulas 107

5 Computation and Properties of Maps 115

5.1 Aberrations and Symmetries 115
 5.1.1 Horizontal Midplane Symmetry 116
 5.1.2 Double Midplane Symmetry 118
 5.1.3 Rotational Symmetry 119
 5.1.4 Symplectic Symmetry 123

5.2 Differential Algebras 128
 5.2.1 The Structure D_1 129
 5.2.2 The Structure D_v 131
 5.2.3 Functions on Differential Algebras 133

5.3 The Computation of Transfer Maps 134
 5.3.1 An Illustrative Example 134
 5.3.2 Generation of Maps Using Numerical Integration 136

5.4 Manipulation of Maps 137
 5.4.1 Composition of Maps 137
 5.4.2 Inversion of Maps 138
 5.4.3 Reversion of Maps 139

6 Linear Phase Space Motion 141

6.1 Phase Space Action 142
 6.1.1 Drifts and Lenses 142
 6.1.2 Quadrupoles and Dipoles 143

6.2 Polygon–like Phase Space 144

6.3 Elliptic Phase Space 145
 6.3.1 The Practical Meaning of α, β and γ . 147
 6.3.2 The Algebraic Relations among the Twiss Parameters 149
 6.3.3 The Differential Relations among the Twiss Parameters 154

6.4 *Edwards-Teng Parametrization 155
 6.4.1 The Algebraic Relations with Coupling 157
Contents

7 Imaging Devices 161
- **7.1** The Cathode Ray Tube (CRT) 161
- **7.2** The Camera and the Microscope 162
- **7.3** Spectrometers and Spectrographs 164
 - **7.3.1** Aberrations and Correction 170
 - **7.3.2** Energy Loss On–Line Isotope Separators 174
- **7.4** *Electron Microscopes and Their Correction* 176
 - **7.4.1** Aberration Correction in SEM, STEM and TEM 178
 - **7.4.2** Aberration Correction in PEEM and LEEM 183

8 The Periodic Transport 189
- **8.1** The Transversal Motion 189
 - **8.1.1** The Eigenvalues 189
 - **8.1.2** The Invariant Ellipse 194
- **8.2** Dispersive Effects 198
 - **8.2.1** The Periodic Solution 198
 - **8.2.2** Chromaticity 200
- **8.3** A Glimpse at Nonlinear Effects 205

9 Lattice Modules 207
- **9.1** The FODO Cell 208
 - **9.1.1** The FODO Cell Based Achromat 214
 - **9.1.2** The Dispersion Suppressor 224
- **9.2** Symmetric Achromats 226
 - **9.2.1** The Double-Bend Achromat 229
 - **9.2.2** The Triple-Bend Achromat 230
 - **9.2.3** The Multiple-Bend Achromat 230
 - **9.2.4** The \mathcal{H} Function 231
- **9.3** Special Purpose Modules 235
 - **9.3.1** The Low Beta Insertion 235
 - **9.3.2** The Chicane Bunch Compressor 236
 - **9.3.3** Other Bunch Compressors 240

10 Synchrotron Motion 241
- **10.1** RF Fundamentals 241
- **10.2** The Phase Slip Factor 245
- **10.3** Longitudinal Dynamics 252
- **10.4** Transverse Dynamics of RF Cavities 257

11 *Resonances in Repetitive Systems* 261
- **11.1** Integer Resonance 261
- **11.2** Half-Integer Resonance 264
- **11.3** Linear Coupling Resonance 271
- **11.4** Third–Integer Resonance 281
Contents

References ... 295
Index .. 301
List of Figures

1.1 A beam — an ensemble of particles in the vicinity of a reference particle with phase space coordinate \vec{Z}_0. 2
1.2 Sketch of an early thermionic emission electron source. 5
1.3 Sketch of one of the earliest electron sources using point cathodes. ... 6
1.4 Layout and field distribution of the RF gun at the Linac Coherent Light Source (LCLS). 8
1.5 Drawing of a surface plasma source of the magnetron geometry. 9
1.6 Layout of the first electron cyclotron resonance (ECR) ion source that produced multiple charged ions. 11
1.7 The general principle of the Cockcroft-Walton generator. 12
1.8 Design sketch of the Van de Graaff high voltage generator. 13
1.9 Design sketch of the use of the Van de Graaff generator as a particle accelerator. .. 14
1.10 The principle of the tandem Van de Graaff accelerator. ... 15
1.11 Sketch of the principle of the linear accelerator of the Alvarez type. ... 16
1.12 Illustration of a linear accelerator, designed by E. O. Lawrence and H. D. Sloan. ... 17
1.13 Sketches illustrating the basic principles of the linear accelerator of the Alvarez type. 18
1.14 The structure of the RFQ, the radio-frequency quadrupole linear accelerator. ... 18
1.15 Sketch of the first Free Electron Laser (FEL). 20
1.16 Illustration of the magnet of a betatron. 21
1.17 Illustration of the first microtron. 23
1.18 The principle of the cyclotron. 24
1.19 The first model of the FFAG, the Fixed-Field Alternating Gradient accelerator. .. 25
1.20 Sketch of the Bevatron, designed to achieve “Billions of eV Synchrotron,” at Lawrence Berkeley National Laboratory, California, USA. .. 26
1.21 Layout of the Cooler Synchrotron (COSY) ring at the Institute of Nuclear Physics (IKP) at Forschungszentrum Jülich, Germany. ... 27
List of Figures

1.22 Layout of the Super-ACO light source storage ring at Laboratoire pour l’Utilisation du Rayonnement Electromagnétique, Orsay, France .. 28
1.23 Layout of the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory, California, USA. 29
2.1 Reference orbit, arc length s along it and local coordinates. . 32
2.2 Motion of particles inside the tube with radius r_{tube} around the reference orbit. . .. 33
2.3 A ray passing through a drift. ... 37
2.4 A bundle of parallel rays passing through a focusing lens. .. 38
2.5 A bundle of parallel rays passing through a defocusing lens. . 39
2.6 A bundle of parallel rays is reflected by the focusing mirror. 41
2.7 Liouville’s theorem. ... 42
2.8 Poincaré’s recurrence theorem. .. 43
2.9 Sketch of an imaging system. ... 44
2.10 Sketch of a parallel–to–point system. 46
2.11 Sketch of a point–to–parallel system. 46
2.12 Sketch of a parallel–to–parallel system. 47
3.1 Ideal electrodes of an electrostatic quadrupole. 54
3.2 The s-dependence of the multipole strength 55
3.3 Scalar potential, longitudinal and radial field distribution of a rotationally symmetric lens. .. 56
3.4 Reference orbit of a bending magnet. 57
3.5 The curvilinear coordinates in the plane of the reference orbit. 62
4.1 A homogeneous magnetic dipole. 73
4.2 Entrance and exit edge lines of a dipole magnet. 77
4.3 Mechanism of edge focusing for the horizontal plane and the vertical plane. .. 78
4.4 An inhomogeneous sector magnet. 82
4.5 An electric capacitor consisting of two parallel plates. The orbit of a particle is parabolic. .. 84
4.6 A concentric electric deflector .. 84
4.7 An electric deflector with cylindrical plates. 86
4.8 An electric deflector with spherical plates. 86
4.9 Layout and potential profile of the electrostatic three-plate round lens. ... 96
4.10 Transversal motion of particles entering initially parallel to the reference axis in the magnetic solenoid. 100
5.1 Trajectories of particles in a system with horizontal midplane symmetry. .. 117
5.2 Motion in a 90° homogeneous dipole magnet. 135
6.1 Mapping of individual points in phase space. 141
6.2 Mapping of a closed curve in phase space. 142
6.3 Action of a drift in phase space. 143
6.4 Action of a thin lens in phase space. 144
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>Action of a quadrupole or dipole in phase space.</td>
<td>144</td>
</tr>
<tr>
<td>6.6</td>
<td>Mapping of a polygon in phase space.</td>
<td>145</td>
</tr>
<tr>
<td>6.7</td>
<td>An ellipse in phase space.</td>
<td>146</td>
</tr>
<tr>
<td>6.8</td>
<td>Characteristic points of an ellipse in phase space.</td>
<td>147</td>
</tr>
<tr>
<td>6.9</td>
<td>Sketch of horizontal and vertical β functions of a beamline.</td>
<td>148</td>
</tr>
<tr>
<td>6.10</td>
<td>Transformation of an ellipse under a drift.</td>
<td>152</td>
</tr>
<tr>
<td>6.11</td>
<td>Plot of the β function in a drift.</td>
<td>153</td>
</tr>
<tr>
<td>7.1</td>
<td>Sketch of an imaging system.</td>
<td>161</td>
</tr>
<tr>
<td>7.2</td>
<td>Curvature of the image.</td>
<td>163</td>
</tr>
<tr>
<td>7.3</td>
<td>The Browne-Buechner spectrograph.</td>
<td>165</td>
</tr>
<tr>
<td>7.4</td>
<td>Illustration of the imaging condition arising from Barber’s rule.</td>
<td>166</td>
</tr>
<tr>
<td>7.5</td>
<td>Sketch of a generic spectrograph consisting of a single dipole.</td>
<td>168</td>
</tr>
<tr>
<td>7.6</td>
<td>Sketch of a generic spectrograph now subject to aberrations up to order seven.</td>
<td>169</td>
</tr>
<tr>
<td>7.7</td>
<td>The effect of the aberration $(x</td>
<td>a\delta)$.</td>
</tr>
<tr>
<td>7.8</td>
<td>A magnified drawing of the effect of the aberration $(x</td>
<td>a\delta)$.</td>
</tr>
<tr>
<td>7.9</td>
<td>Layout of an example of a fragment separator.</td>
<td>175</td>
</tr>
<tr>
<td>7.10</td>
<td>Spherical and chromatic aberrations.</td>
<td>177</td>
</tr>
<tr>
<td>7.11</td>
<td>Cosine-like rays and sine-like rays of the quadruplet corrector.</td>
<td>179</td>
</tr>
<tr>
<td>7.12</td>
<td>A quadrupole-octupole C_S corrector.</td>
<td>179</td>
</tr>
<tr>
<td>7.13</td>
<td>A sextupole C_S corrector.</td>
<td>181</td>
</tr>
<tr>
<td>7.14</td>
<td>Sine-like and cosine-like rays of a C_S corrected TEM from objective lens to the end of the corrector section.</td>
<td>181</td>
</tr>
<tr>
<td>7.15</td>
<td>Sine-like and cosine-like rays of the TEAM corrector.</td>
<td>182</td>
</tr>
<tr>
<td>7.16</td>
<td>Sine-like and cosine-like rays of the TEAM microscope from objective lens to end of the corrector section.</td>
<td>182</td>
</tr>
<tr>
<td>7.17</td>
<td>Spherical and chromatic aberrations of an electron mirror.</td>
<td>183</td>
</tr>
<tr>
<td>7.18</td>
<td>Geometry of the tetrode mirror in PEEM3.</td>
<td>184</td>
</tr>
<tr>
<td>7.19</td>
<td>Layout of PEEM3.</td>
<td>184</td>
</tr>
<tr>
<td>7.20</td>
<td>The beam separator of the first aberration-corrected PEEM.</td>
<td>185</td>
</tr>
<tr>
<td>7.21</td>
<td>The PEEM3 beam separator.</td>
<td>186</td>
</tr>
<tr>
<td>7.22</td>
<td>Sine-like, cosine-like and dispersive rays of the PEEM3 beam separator.</td>
<td>186</td>
</tr>
<tr>
<td>7.23</td>
<td>Aberration-corrected and energy-filtered LEEM at IBM.</td>
<td>187</td>
</tr>
<tr>
<td>8.1</td>
<td>Motion in phase space and in the eigenspace when $</td>
<td>\text{tr } M</td>
</tr>
<tr>
<td>8.2</td>
<td>Relation between the phase space variables and the eigenvectors.</td>
<td>191</td>
</tr>
<tr>
<td>8.3</td>
<td>Relation between the eigenvalues when $</td>
<td>\text{tr } M</td>
</tr>
<tr>
<td>8.4</td>
<td>Motion in phase space and in the eigenspace when $</td>
<td>\text{tr } M</td>
</tr>
<tr>
<td>8.5</td>
<td>Possible movement of the eigenvalues under small perturbation near $</td>
<td>\text{tr } M</td>
</tr>
<tr>
<td>8.6</td>
<td>Stable motion in phase space.</td>
<td>197</td>
</tr>
<tr>
<td>8.7</td>
<td>Illustration of the case where the beam ellipse and the invariant ellipses are matched.</td>
<td>198</td>
</tr>
<tr>
<td>8.8</td>
<td>Behavior of a mismatched beam.</td>
<td>199</td>
</tr>
</tbody>
</table>
List of Figures

9.1 Sketch of a FODO cell without bending magnets. 208
9.2 The “necktie” diagram showing the stability region of a FODO cell. ... 209
9.3 Sketch of a FODO cell with bending magnets. 209
9.4 Lattice functions of a FODO cell at the Fermilab Main Injector. 212
9.5 The simplest double-bend achromat. 230
9.6 The double-bend achromat. 230
9.7 Lattice functions of a double-bend achromat. 231
9.8 The triple-bend achromat. 231
9.9 Lattice functions of a triple-bend achromat of the Advanced Light Source. .. 232
9.10 Lattice functions of the MAX IV multiple-bend achromat lattice. .. 233
9.11 Lattice functions of a typical low beta insertion with symmetric quadrupole triplets. 236
9.12 Layout of the chicane bunch compressor. 237
9.13 Mechanism of an RF buncher cavity. 240
10.1 Typical RF cavity field with fundamental mode TM_{010}. 242
10.2 Dependence of transit time factor on length of the cavity. 246
10.3 Sketch of phase stability for energy below transition. 249
10.4 Sketch of phase stability for energy above transition. ... 250
10.5 Phase space plots of longitudinal motion with \(\phi_s = \pi/2 \) and \(\phi_s = \pi/3 \). ... 257
10.6 Longitudinal and transverse field distribution along the longitudinal axis. 258
11.1 Distinct eigenvalues around the unit circle. 277
11.2 Crossing the difference resonance. 279
11.3 Invariant obtained through first order perturbation theory and tracking. 287
11.4 Invariant obtained through first order perturbation theory and tracking. 287
Preface

This volume provides an introduction to the physics of beams. This field touches many other areas of physics, engineering and the sciences, and in turn benefits from numerous techniques also used in other disciplines. In general terms, beams describe ensembles of particles with initial conditions similar enough to be treated together as a group, so that the motion is a weakly nonlinear perturbation of that of a chosen reference particle.

Applications of particle beams are very wide, including electron microscopes, particle spectrometers, medical irradiation facilities, powerful light sources, astrophysics – to name a few – and reach all the way to the largest scientific instruments built by man, namely, large colliders like LHC at CERN.

The text is based on lectures given at Michigan State University’s Department of Physics and Astronomy, the online VUBeam program, the US Particle Accelerator School, the CERN Academic Training Programme, and various other venues. Selected additional material is included to round out the presentation and cover other significant topics.

The material is at a level to be accessible to students of physics, mathematics and engineering at the beginning graduate or upper division undergraduate level and can be viewed as an introductory companion to the more advanced Modern Map Methods in Particle Beam Physics by M. B., published by Academic Press. Emphasis has been placed on showing major concepts in their original incarnations and through historic figures. Finally, some of the sections and chapters that contain more advanced material are marked by a * symbol and can be omitted in a first reading.

Many organizations and individuals have helped directly and indirectly at various stages in the development of this book. MSU’s Physics and Astronomy Department provided an environment of support for this and other books, the VUBeam program, as well as many of our other activities.

For two decades of continuous financial support that were instrumental to the success of the book, the VUBeam program, and indeed much of our research, we are grateful to the US Department of Energy, and in particular to Dr. Dave Sutter, the long-term coordinator of their beam physics activities.

K. M. would like to thank her daughter Kazuko for her own great interest in physics and science and much encouragement during the finalization of this text.

W. W. would like to thank Dr. D. Robin for his encouragement, Dr. E. Forest for stimulating discussions on various aspects of beam dynamics such as normal form theory, and his wife Juxiang Teng for her unwavering support
Preface

throughout this project.

All of us want to thank Béla Erdélyi, Gabi Weizman, Pavel Snopok and He Zhang for thoughtful comments about the material. We also are thankful to many authors, national laboratories and publishers allowing us to reproduce published figures. The details are described in the corresponding figure captions.

Last but not least, we are very grateful to the entire staff of Taylor & Francis for their continuous support, in particular to Francesca McGowan for her great interest and productive comments.

Martin Berz
Kyoko Makino
Weishi Wan
Index

Aberration, 36, 115, 116, 167
Chromatic, 163, 178, 235
Derivation, 107
Electron Microscope, 177, 178, 183
Integral Form, 110
Order-by-Order Computation, 109
Spectrograph, 170
Spherical, 169, 177
Acceleration, 4, 11
Accelerator
Mass Spectrometer, 164
Physics, 4
Acceptance, 164
Achromat
Double-Bend (DBA), 226, 229–231, 234
Multiple-Bend (MBA), 230, 233
Triple-Bend (TBA), 226, 230–232, 234
Achromaticity, 236
Adiabatic Damping, 212
Advanced Light Source (ALS), 29, 30, 149, 232, 256
Alpha, see Twiss Parameter
ALS, see Advanced Light Source
Alternate Gradient, 207
Focusing, 25
Synchrotron, 28
Alvarez, L. W., 18
Analytic
Complex Variables, 120
Angular Momentum, 105
Anode, 5
Antiproton Source, 4
Arc Length, 32, 60, 61
Astrodynamics, 1

B Rho, 20
Ballistic, 7
Bunching, 240
Barber’s Rule, 166
Barrel Distortion, 163
Beam, 10
Current, 15
Ellipse, 194
Optics, 31
Periodic Transport, 189
Production, 4
Beating, 159, 198
Bending Magnet, see Dipole
Bessel Function, 242
Beta, see Twiss Parameter
Betatron, 19, 21, 207
Condition, 22
Bevatron, 26
Binoculars, 163
BMDO, see Strategic Defense Initiative
BNL, see Brookhaven National Laboratory
Bp, see B Rho
Brightness, 7
Brookhaven National Laboratory (BNL), 28
Browne-Buechler Spectrograph, 166
Bunch Compressor, 236, 240
Buncher, 240
Camera, 41, 162
Capture, 9
Carbon Foil, 8
Cathode, 4, 5
Ray Tube, 161
Cavity, 22, 29, 212, 232, 240, 241
Electromagnetic Field, 241
Field Distribution, 241
Longitudinal Dynamics, 252
TM010, 242
TM110, 243
Transverse
Dynamics, 257
Focusing, 259, 260
\(C_C \), see Aberration, Chromatic
CEBAF, see Continuous Electron Beam Accelerating Facility
Centroid, 263
CERN, see European Organization for Nuclear Research
Cesium, 7, 9
Cesiation, 7
Charge, 1
Chicane, 236, 240
Child-Langmuir Law, 5
Chromatic Aberration, see
Aberration, Chromatic
Chromaticity, 200, 213, 268, 281
Correction, 204
Natural, 202
Closed Orbit, 232, 263
Cockcroft, J. D., 12, 13
Cockcroft-Walton, 12, 13
Cold Field Emission Gun (CFEG), 7
Collider, 19, 26, 28–30
Coma, 163
Combination Systems, 48
Complex Coordinates
Rotational Symmetry, 119
Continuous
Electron Beam Accelerating Facility (CEBAF), 23
Rotational Symmetry, 120
Wave, 15, 22
Coordinates
Curvilinear, 58, 60, 62
Cylindrical, 50
Particle Optical, 34, 62
Cosine-like Ray, 178, 179
COSY Ring, 27, 28, 30
Coupling, 157
Resonance, 271
CRT, see Cathode Ray Tube
\(C_S \), see Aberration, Spherical
Curvilinear Coordinates, see
Coordinates, Curvilinear
CW, see Continuous, Wave
Cyclotron, 23, 24
Cylindrical Deflector, see
Deflector, Cylindrical
DA, see Differential Algebra
Damping, 212
Rate, 232
DBA, see Achromat, Double-Bend Deflector
Cylindrical, 86
Electrostatic, 83
Spherical, 87
Transfer Matrix, 86
Defocusing Lens, 40
Delta Function, 78, 91, 99
Determinism, 35
DFELL, see Duke Free Electron Laser Laboratory
Difference Resonance, see
Resonance, Difference
Differential Algebra (DA), 111, 115, 132, 159, 199, 200, 205, 249, 292
\(_1D_1\), 129
\(_nD_n\), 131
Arithmetic, 129, 131
Concatenation, 137
COSY INFINITY, 134
Derivatives, 130
Functions, 133
Map
Composition, 137
Computation, 134
Inversion, 138
Manipulation, 137
Numerical Integration, 136
Reversion, 139
Variable
Multiple, 131
Single, 129
Index

Dipole, 73, 143, 210, 236
 Edge, 76
 Error, 261
 Rectangular, 79
 Sector, 76
 Transfer Matrix, 76, 81, 83
Dirac Delta Function, see
 Delta Function
Discrete Rotational Symmetry, 120
Dispersion, 165, 168, 198, 224, 227
 Periodic Solution, 198
 Suppressor, 224
DLD, see Drift-Lens-Drift System
Double Midplane Symmetry, see
 Symmetry, Double Midplane
Double-Bend Achromat, see
 Achromat, Double-Bend
Doublet, 178, 229, 230
Dresden High Magnetic Field Laboratory (HLD), 26
Drift, 37, 69, 142
Drift-Lens-Drift (DLD) System, 45–47
Driving Term, 110
Duke Free Electron Laser Laboratory (DFELL), 215
Dynamic Aperture, 206
ECR Ion Source, see
 Electron, Cyclotron
 Resonance, Ion Source
Eddy Current, 22
Edge
 Angle, 76
 Focusing, 76
 Dipole, 77
 Electrostatic Round Lens, 91
 Magnetic Round Lens, 101
 Solenoid, 101
 Transfer Matrix, 77, 91, 105
Edwards-Teng Parametrization, 155
Eigenvalues
 Periodic Transport, 190
Electric
 Field, 2
 Moment, 1
 Quadrupole, 70
 Rigidity, 64
Electron
 Capture, 9
 Cyclotron Resonance (ECR)
 Heating, 10
 Ion Source, 9–11
 Microscope, 57, 98, 162
 Low Energy (LEEM), 8, 176, 177, 183, 185, 187
 Photo Emission (PEEM), 176, 177, 183, 185–187
 Scanning (SEM), 176–179, 183
 Scanning Transmission (STEM), 176, 177, 179, 181
 TEAM Corrector, 183
 TEAM Project, 176, 182
 Transmission (TEM), 7, 176, 177, 180–183
 Transmission, Aberration-corrected (TEAM), 181, 182
 Source, 4
 Volt, 4
Electrostatic
 Deflector, 83
 Transfer Matrix, 86
 Lens, 177, 183
 Mirror, 184
 Round Lens, 89
Ellipse, 144
 Axis Intersection, 148
 Beam, 194
 Invariant, 194
 Maximal
 Points, 148
 Width, 149
 Transformation, 147, 152
Emission, 4
 Emittance, 2, 4, 141, 146, 189, 231
 Equilibrium, 231
 Normalized, 211
Energy
 Loss Separator, 174
 Mass Spectrometer, 164
Spectrometer, 87
Ensembles of Particles, 1
Epsilon
Emittance, 146
Equations of Motion, 65
 Linearization, 67, 69
 Deflector, 85
 Dipole, Homogeneous, 73
 Dipole, Inhomogeneous, 82
 Drift, 69
 Quadrupole, Electric, 71
 Quadrupole, Magnetic, 72
 Round Lens, Electric, 90
 Round Lens, Magnetic, 98
Particle Optical Coordinates, 65
 Rotational Symmetry, 89
Equilibrium Emittance, see Emittance, Equilibrium
European Organization for Nuclear Research (CERN), 26, 28–30
Expansion
 Fourier, 50
 Taylor, 50, 109, 115
Extended Schottky Emission, 7
Extraction, 30

FEL, see Free Electron Laser
Femri-Dirac Distribution, 5
Fermi National Accelerator Laboratory (Fermilab, FNAL), 28, 207, 211
FFAG, see Fixed-Field Alternating Gradient Accelerator
Field, 1, 2, 49
 Emission, 6
 Gun, 6
 Midplane Symmetry, 59
 Multipole, 54
 Quadrupole, 53
 Rotational Symmetry, 56
 Sextupole, 54
 View, 180, 183
Fixed Target, 30
Fixed-Field Alternating Gradient Accelerator, 25
Flashlight, 46
FNAL, see Fermi National Accelerator Laboratory
Focal Plane
 Tilt, 170
Focusing, 207
 Lens, 38
 Quadrupole, 71
 Round Lens
 Electric, 91, 92
 Magnetic, 101
 Strong, 53, 207
 Synchrotron, 28
 Weak, 56, 88, 207
 Synchrotron, 28
FODO Cell, 208, 214, 224, 226, 229
 Stability, 209
Forschungszentrum Jülich, 27, 28, 30
Fourier Transform Ion Cyclotron Resonance Spectrometer, 164
Free Electron Laser (FEL), 7, 19, 20, 28, 215, 236
Fringe Field, 56
 Electrostatic Round Lens, 90
 Magnetic Solenoid, 99
GaAs, 7
Galilean Telescope, 48
Gamma, see Twiss Parameter
Gaussian
 Image, 177
 Lens, 38
 Optics, 36
Glass Optics, 36

H Function, 231–234
H−, 8
Half-Integer Resonance, see Resonance, Half-Integer
Hamiltonian, 3, 60
Harmonic Number, 255
Heaviside Function, 78, 90, 99, 258
Index

Hochfeld-Magnetlabor Dresden, HLD, see Dresden High Magnetic Field Laboratory
Homogeneous Dipole, 73
Hyperbola, 191

ILC, see International Linear Collider Imaging System, 161
Independent Variable Arc Length, 61
Induction Stovetop, 20
Inert Gas, 14
Inhomogeneous Deflector, 83
Transfer Matrix, 86
Sector Magnet, 82
Transfer Matrix, 83
Injection, 8
Integer Resonance, see Resonance, Integer
Integrability, 206
Interaction Point, 235
International Linear Collider (ILC), 19, 215
Invariant Ellipse, see Ellipse, Invariant
Ion Source, 9, 14
Trap Mass Spectrometer, 164
Ionization Cooling, 98
Isochronous Cyclotron, 24
Isotope Separator, 174

Jacobian, 123, 126, 127
Jefferson Lab (JLab), see Thomas Jefferson National Accelerator Facility
Jülich, see Forschungszentrum Jülich

K1200 Cyclotron, 24
Kaon Source, 4
Kerst, D. W., 21
Kick, 203, 214, 217, 218, 243, 251, 253, 261, 262, 267

Approximation, 77, 79, 91, 99
Kinematic Correction, 70
Laboratoire pour l’Utilisation du Rayonnement Electromagnétique (LURE), 28
Lagrangian, 3, 60
Langmuir Law, see Child-Langmuir Law
LANL, see Los Alamos National Laboratory
Laplace’s Equation, 49
Laplacian
Curvilinear Coordinates, 58
Cylindrical Coordinates, 50, 58
Particle Optical Coordinates, 58
Large Electron-Positron Collider (LEP), 30
Hadron Collider (LHC), 26, 28–30, 32
Lattice Modules, 207
Lawrence Berkeley National Laboratory (LBNL, LBL), 26, 27, 149, 184, 186, 230, 256
Lawrence, E. O., 24
LBNL, see Lawrence Berkeley National Laboratory
LCD, see Liquid Crystal Display
LCLS, see Linac Coherent Light Source
LDL, see Lens-Drift-Lens System
LEEM, see Electron Microscope, Low Energy
Lens, 37, 40, 142, 143
 Electrostatic Round, 89, 177
 Imaging, 45
 Magnetic Round, 97, 177
 Lens-Drift-Lens (LDL) System, 47
 LEP, see Large Electron-Positron Collider
 LHC, see Large Hadron Collider
 Light Optics, 1
 Source, 28–30
Linac, see Linear, Accelerator
Linac Coherent Light Source (LCLS), 8, 239

Linear
 Accelerator, 15–18, 235
 Coupling Resonance, 271
 Dynamics, 205
 Map, 35
 Motion, 141
Linearization, 31, 67, 108
Liouville's Theorem, 41, 48, 126, 165, 189

Liquid Crystal Display (LCD), 162
Longitudinal Dynamics, 33, 252
Lorentz Force, 2, 11, 54, 60
Los Alamos National Laboratory (LANL), 215
Los Alamos National Laboratory (LANL), 18, 26

Low
 Beta Insertion, 235
 Energy Electron Microscope, see Electron, Microscope, Low Energy
LURE, see Laboratoire pour l'Utilisation du Rayonnement Electromagnétique

Magnetic
 Dipole, 73, 134
 Field, 2
 Lens, 177
 Mirror, 10
 Moment, 1
 Quadrupole, 72
 Rigidity, 20, 64
 Round Lens, 97
Magnetron, 8
Magnification, 44, 48, 162
Main Injector (Fermilab), 211
Map, see Transfer Map
Mass, 1
 Spectrograph, 170
 Spectrometer, 164
Matching, 198

MAX IV Laboratory, 230, 233
Maxwell's Equations, 49
MBA, see Achromat, Multiple-Bend Microscope, 46
Microtron, 22, 23
Microwave, 9
Midplane
 Field, 59
 Symmetry, 116
 Double, 118
 Stable Motion, 190
Mirror, 40
 Electrostatic, 184
 Symmetry, 227
 Misalignment, 271
MIT-Bates Linear Accelerator Center, 215
Momentum, 1, 60
 Acceptance, 168
 Dynamical, 32
 Spectrometer, 164
 Browne-Buechner, 166
 Q Value, 167
 Resolution, 166
Multiple-Bend Achromat, see Achromat, Multiple-Bend
Multipole Order, 52

National
 High Magnetic Field Laboratory (NHMFL), 26
 Superconducting Cyclotron Laboratory (NSCL), 24
 Natural Chromaticity, 202
 Necktie Diagram, 209
 Needle, 6
 Newtonian Telescope, 48
NHMFL, see National High Magnetic Field Laboratory
Nonlinear Dynamics, 115, 205
Normal Form, 191, 261
Normalized Emittance, see Emittance, Normalized
NSCL, see National Superconducting Cyclotron Laboratory
<table>
<thead>
<tr>
<th>Index</th>
<th>307</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Systems, 43</td>
<td>Field Distribution, 241</td>
</tr>
<tr>
<td>Optics, 1, 36</td>
<td>TM_{010}, 242</td>
</tr>
<tr>
<td>Oscilloscope, 161</td>
<td>TM_{110}, 243</td>
</tr>
<tr>
<td>Packing Factor, 226</td>
<td>Pincushion Distortion, 163</td>
</tr>
<tr>
<td>Parallel-to-Parallel, 47</td>
<td>Pion Source, 4</td>
</tr>
<tr>
<td>Perpendicular Transport, 190</td>
<td>Plasma Physics, 1</td>
</tr>
<tr>
<td>Parallel-to-Point, 46</td>
<td>Poincaré Recurrence Theorem, 42</td>
</tr>
<tr>
<td>Perpendicular Transport, 190</td>
<td>Point Filament, 7</td>
</tr>
<tr>
<td>Parallelogram, 145</td>
<td>Point-to-Parallel, 46</td>
</tr>
<tr>
<td>Particle Optical Coordinates, see Coordinates, Particle Optical</td>
<td>Periodic Transport, 190</td>
</tr>
<tr>
<td>PEEM, see Electron Microscope, Photo Emission</td>
<td>Point-to-Point, 44</td>
</tr>
<tr>
<td>PEEM3, 184, 186</td>
<td>Periodic Transport, 190</td>
</tr>
<tr>
<td>Periodic Solution, 263, 267</td>
<td>Polygon, 144</td>
</tr>
<tr>
<td>Transport, 189</td>
<td>Position, 1</td>
</tr>
<tr>
<td>Perpetual Motion Machine, 12</td>
<td>Positron Source, 4</td>
</tr>
<tr>
<td>Perturbation Theory, 31, 35, 115</td>
<td>Potential, 2, 49</td>
</tr>
<tr>
<td>Phase, 261</td>
<td>Electrostatic, 63</td>
</tr>
<tr>
<td>Advance, 149</td>
<td>Pre-Accelerator, 19</td>
</tr>
<tr>
<td>Multipole, 52</td>
<td>Production of Beam, 4</td>
</tr>
<tr>
<td>Slip Factor, 245, 247, 256</td>
<td>Projector, 44</td>
</tr>
<tr>
<td>Leading Order, 247</td>
<td>Proton Source, 8</td>
</tr>
<tr>
<td>Second Order, 248, 250</td>
<td>Q Value, 167</td>
</tr>
<tr>
<td>Phase Space, 1</td>
<td>Quad, see Quadrupole</td>
</tr>
<tr>
<td>Linear Motion, 141</td>
<td>Quadrupole, 52, 143, 173, 208, 229, 235, 271</td>
</tr>
<tr>
<td>Dipole, 143</td>
<td>Electric, 70</td>
</tr>
<tr>
<td>Drift, 142</td>
<td>Error, 264</td>
</tr>
<tr>
<td>Ellipse, 144</td>
<td>Magnetic, 72</td>
</tr>
<tr>
<td>Lens, 142</td>
<td>Mass Spectrometer, 164</td>
</tr>
<tr>
<td>Polygon, 144</td>
<td>Rotational Symmetry, 122</td>
</tr>
<tr>
<td>Quadrupole, 143</td>
<td>Transfer Matrix, 70</td>
</tr>
<tr>
<td>Volume, 41</td>
<td>Radio Frequency (RF), 15, 22</td>
</tr>
<tr>
<td>Photo</td>
<td>Cavity, 17, 22, 29, 212, 232, 241</td>
</tr>
<tr>
<td>Cathode, 7</td>
<td>Gun, 7, 8</td>
</tr>
<tr>
<td>Effect, 7</td>
<td>Quadrupole Accelerator (RFQ), 18</td>
</tr>
<tr>
<td>Emission, 7</td>
<td>Radioactive Beam, 4, 174</td>
</tr>
<tr>
<td>Electron Microscope, see Electron Microscope, Photo Emission</td>
<td>Rectangular Dipole, 79</td>
</tr>
<tr>
<td>Reference</td>
<td>Recurrence Theorem, 42, 43</td>
</tr>
<tr>
<td>Orbit, 32, 50</td>
<td>Particle, 2, 10, 31</td>
</tr>
<tr>
<td>Relative</td>
<td></td>
</tr>
</tbody>
</table>
Index

Coordinates, 31
Dynamics, 32
Relativistic Heavy Ion Collider (RHIC), 28
Repetitive System, 261
Resolution, 164, 166
 Linear, 166
 Nonlinear, 167
Resolving Power, 166
Resonance, 206, 261, 263
 Coupling, 271
 Difference, 276, 279, 280
 Half–Integer, 264, 266
 Integer, 261
 Sum, 276, 279, 280
 Third Order
 Tune Shift, 293
 Tune Shift, Amplitude, 292
 Third–Integer, 281
 Perturbed Invariant, 286
RF, see Radio Frequency
RFQ, see Radio Frequency, Quadrupole Accelerator
RHIC, see Relativistic Heavy Ion Collider
Richardson-Dushman Equation, 5
Rigidity, 20, 64
 Electric, 64
 Magnetic, 64
Ring, see Storage Ring
Rotational Symmetry, see
 Symmetry, Rotational
Round Lens, 87, 123, 177
 Electric, 89
 Magnetic, 97
Scalar Potential, 2, 49
Scanning Electron Microscope, see
 Electron, Microscope, Scanning
Scanning Transmission Electron Microscope, see
 Electron, Microscope, Scanning Transmission
Schottky Emission, 7
SDI, see Strategic Defense Initiative
Sector
 Field Mass Spectrometer, 164
 Magnet, 76
 Inhomogeneous, 82
Self Interaction, 2
SEM, see Electron, Microscope, Scanning
Sextupole, 180, 213, 235, 271
Shanghai Synchrotron Radiation Facility (SSRF), 235
Shearing
 Horizontal, 142
 Vertical, 143
Sigma
 Ellipse Matrix, 145
Sine-like Ray, 178, 179
SLAC National Accelerator Laboratory, 8, 19, 215, 239
SLC, see Stanford Linear Collider
Small Oscillation, 67
SMART, see SpectroMicroscopy for All Relevant Techniques
Solenoid, 97, 271
 Edge, 99
 Rotational Symmetry, 121
Source
 Electron, 4
 Ion, 9, 14
 Proton, 8
South Hall Ring (MIT), 215
Space Charge, 2
Spark, 14, 16
Spectrograph, 164
Spectrometer, 87, 164
 Mass, 164
 Momentum, 164
 Resolution, 166
SpectroMicroscopy for All Relevant Techniques Project (SMART), 184
Spherical
 Aberration, see
 Aberration, Spherical
Index

Deflector, see
 Deflector, Spherical
Lens, 39
Spin, 1
SSRF, see Shanghai Synchrotron
 Radiation Facility
Stanford Linear Collider (SLC), 19
Steering, 207
STEM, see Electron, Microscope,
 Scanning Transmission
Step Function, see
 Heaviside Function
Stigmatic Image, 87
Stop Band, 263, 268, 275, 280
 Half–Integer, 270
 Integer, 269, 270
Storage Ring, 4, 27–30, 261
Strategic Defense Initiative (SDI), 46
Stripping, 8, 15
Strong Focusing, see Focusing, Strong
Sum Resonance, see Resonance, Sum
Super-ACO Ring, 28
Surface Plasma Source, 8
Symmetry, 115
 Double Midplane, 118
 Midplane, 116
 Mirror, 227
 Rotational, 50, 119, 120
 Quadrupole, 122
 Round Lens, 87
 Symplectic, 123
 Transfer Map, 116
Symplectic
 Condition, 124, 126
 Edwards-Teng Parametrization, 155
Symmetry, see
 Symmetry, Symplectic
Synchrocyclotron, 25
Synchronicity Condition, 23
Synchrotron, 25, 27, 30, 207
 Light Source, 30
 Motion, 241
 Radiation, 6, 19, 30, 231
 Tune, 256
Tandem Van de Graaff, 15
TBA, see Achromat, Triple-Bend
TEAM, see Electron, Microscope,
 Transmission, Aberration-corrected
Telescope, 41, 47, 235
Television Tube (TV), 161
TEM, see Electron, Microscope,
 Transmission
Tevatron, 28, 207
Thermionic
 Emission, 5
 Gun, 5
Thin
 Lens, 37
 Edge Focusing, 77
 Mirror, 40
Third Order Resonance, see
 Resonance, Third Order
Third–Integer Resonance, see
 Resonance, Third Integer
Thomas Jefferson National
 Accelerator Facility
 (Jefferson Lab, JLab, TJNAF), 23
Tilt of Focal Plane, 170
Time Reversal, 8
Time-of-Flight, 33
 Mass Spectrometer, 164
Time-Resolved Spectroscopy, 7
TJNAF, see Thomas Jefferson
 National Accelerator
 Facility
Transfer Map, 35, 36, 116
 Differential Algebra, 134
 Symmetry, 116
Transfer Matrix, 36
 Drift, 37, 70
 Edge Focusing
 Electrostatic Round Lens, 91
 Magnetic Dipole, 77
 Solenoid, 105
Electric
 Deflector, Cylindrical, 86
 Deflector, Inhomogeneous, 86
Index

Deflector, Spherical, 87
Quadrupole, 71
Round Lens, 95, 97

Lens
Defocusing, 40
Drift-Lens-Drift (DLD), 45
Focusing, 38
Lens-Drift-Lens (LDL), 47

Magnetic
Dipole, Homogeneous, 76
Dipole, Inhomogeneous, 83
Dipole, Rectangular, 81
Dipole, Sector, 76
Quadrupole, 72
Round Lens, 105
Solenoid, 105

Mirror
Defocusing, 41
Focusing, 40

Transit Time Factor, 244, 245
Transition, 248
Jump, 248

Transmission Electron Aberration-corrected Microscope, see Electron, Microscope, Transmission, Aberration-corrected

Transmission Electron Microscope, see Electron, Microscope, Transmission

Transport, 4
Transversal Dynamics, 33
Triple-Bend Achromat, see Achromat, Triple-Bend
Triplet, 229, 230, 235
Tune, 192, 193, 206, 208
Shift, 293
Amplitude, 292
Synchrotron, 256

Tungsten, 7

Translation, 6
TV Tube, see Television Tube

Twiss Parameter, 146
Alpha, 146
Beating, 159

Beta, 146
Function, 149
Gamma, 146

Ultra-Slow Extraction, 30
Undulator, 19, 30
Unstable Motion, 191
Perturbation, 194

Van de Graaff, R. J., 13–15
Vector Potential, 2, 49
Veksler, V., 22, 23
Velocity, 60
Voltage Multiplier, 12

Waist, 153
Walton, E. T. S., 12, 13
Weak Focusing, see Focusing, Weak
Weakly Nonlinear, 35, 66
Wideröe, R., 16
Wien Filter Quadrupole, 179
Wiggler, 30
Work Function, 4

Zirconium, 7
The field of beam physics touches many areas of physics, engineering and the sciences. In general terms, beams describe ensembles of particles with initial conditions similar enough to be treated together as a group so that the motion is a weakly nonlinear perturbation of a chosen reference particle. Particle beams are used in a variety of areas, ranging from electron microscopes, particle spectrometers, medical radiation facilities, powerful light sources and astrophysics to large synchrotrons and storage rings such as the LHC at CERN.

An Introduction to Beam Physics is based on lectures given at Michigan State University’s Department of Physics and Astronomy, the online VUBeam program, the U.S. Particle Accelerator School, the CERN Academic Training Programme and various other venues. It is accessible to beginning graduate and upper-division undergraduate students in physics, mathematics and engineering. The book begins with a historical overview of methods for generating and accelerating beams, highlighting important advances through the eyes of their developers using their original drawings. The book then presents concepts of linear beam optics, transfer matrices, the general equations of motion and the main techniques used for single- and multi-pass systems. Some advanced nonlinear topics, including the computation of aberrations and a study of resonances, round out the presentation.

Features
• Provides an introduction to the physics of beams from a historical perspective
• Describes the production, acceleration and optics of beams
• Discusses transfer matrices and maps for particle accelerators and other weakly nonlinear dynamical systems
• Covers various important devices used for imaging and repetitive systems, including electron microscopes, spectrometers and storage rings
• Incorporates some advanced material such as aberration integrals and the treatment of resonances