Reprint Server

Arbitrary Order Description of Arbitrary Particle Optical Systems


Abstract

The differential algebraic approach for the design and analysis of particle optical systems and accelerators is presented. It allows the computation of transfer maps to arbitrary orders for arbitrary arrangements of electromagnetic fields, including the dependence on system parameters. The resulting maps can be cast into different forms. In the case of a Hamiltonian system, they can be used to determine the generating function or Eikonal representation. Also various factored Lie operator representations can be determined directly. These representations for Hamiltonian systems cannot be determined with any other method beyond relatively low orders. In the case of repetitive systems, a combination of the power seres representation and the Lie operator representation allows a nonlinear change of variables such that the motion is very simple and its long term behaviour can be studied very efficiently. Furthermore, it is now possible to compute quantities relevant to the study of circular machines like tune shifts and chromaticities much more efficiently. Besides these aspects, the ability to compute maps depending on parameters provides analytical insight into the system. In addition, this approach allows very efficient optimization, to the extent that in many cases it is almost completely analytic.


M. Berz, Nuclear Instruments and Methods A298 (1990) 426-440


Download

Click on the icon to download the corresponding file.

Download Adobe PDF version (1278296 Bytes).


Go Back to the reprint server.
Go Back to the home page.


This page is maintained by Ravi Jagasia. Please contact him if there are any problems with it.