The bifurcation graph of the Kuramoto-Sivashinski equation

Gianni Arioli (joint work with Hans Koch)

Miami, December 17, 2003
The Kuramoto-Sivashinsky equation

\[v_t + 4\Delta^2 v + \alpha \left(\Delta v + \frac{1}{2} (\nabla v)^2 \right) = 0, \quad \alpha > 0 \]

The unidimensional equation

\[v_t + 4v_{xxxx} + \alpha \left(v_{xx} + \frac{1}{2}v_x^2 \right) = 0 \quad 0 \leq x \leq 2\pi \]

has been the object of many analytical and numerical studies. Differentiating the equation with respect to \(x \) and setting \(u = v_x \) one obtains the alternative form of the equation

\[u_t + 4u_{xxxx} + \alpha(u_{xx} + (u^2)_x) = 0 \quad 0 \leq x \leq \pi \, , \, u(0, t) = u(\pi, t) = 0 \, , \, \forall t \]

We focus our attention on the bifurcation graph of odd steady states, i.e. solutions of the problem

\[4u^{(4)} + \alpha(u'' + 2uu') = 0 \quad 0 \leq x \leq \pi \, , \, u(0) = u(\pi) = 0 . \]
In P. Zgliczyński, K. Mischaikow, *Rigorous numerics for partial differential equations: The Kuramoto-Sivashinsky equation*, Found. of Comp. Math. 1 255-288 (2001) a new method for proving existence theorems for nonlinear dissipative equations has been introduced. This method relies on the existence of self consistent a priori bounds.

In P. Zgliczyński, K. Mischaikow, *Towards a rigorous steady states bifurcation diagram for the Kuramoto-Sivashinski equation - a computer assisted rigorous approach* the problem of the rigorous study of a bifurcation diagram has been set.
Main features of the equation.

Let $R_1 : u(x) \mapsto -u(\pi - x)$. It is clear that if u is a solution, then $R_1(u)$ is also a solution. It is also clear that, if u is a symmetric solution with respect to R_1, i.e. $u = R_1(u)$, then

$$-u(\pi/2 - x) \text{ if } 0 \leq x \leq \pi/2 - u(3\pi/2 - x) \text{ if } \pi/2 \leq x \leq \pi$$

is also a solution. In a similar fashion one can define the symmetry R_{2k} for all $k = 0, 1, \ldots$ and verify that if u is a solution satisfying $u = R_{2k}(u)$ for all $k = 0, \ldots, n$ and $u \neq R_{2n+1}(u)$ then $R_{2n+1}(u)$ is another solution. This means that all solutions come in pairs.
Consider the linearization of the equation at 0

\[L_0(u) = -4u_{xxxx} - \alpha u_{xx} = 0, \quad 0 \leq x \leq \pi \quad u(0) = u(\pi) = 0. \]

The eigenvalues are \(\lambda_k = \alpha k^2 - 4k^4, k = 1, 2, \ldots \). If \(\alpha < 4 \), then all eigenvalues are negative and no nontrivial steady state exists. At \(\alpha = 4k^2 \), \(k = 1, 2, \ldots \), \(L_0 \) is not invertible and the full equation admits a pitchfork bifurcation at 0 and two branches of nontrivial solutions bifurcate from the zero solution. These branches are called unimodal \((k = 1) \), bimodal \((k = 2) \), and generically \(k \)-modal.

If \(\alpha \neq 4k^2, k = 1, 2, \ldots \), then \(L_0 \) is invertible and therefore there cannot be nontrivial solutions branching off the trivial solution other than the \(k \)-modal branches.
Given $\rho > 0$, let $\mathcal{D}_\rho = \{ x \in \mathbb{C} : |\text{Im}(x)| < \rho \}$, and denote by \mathcal{C}_ρ the space of all functions $f : \mathcal{D}_\rho \rightarrow \mathbb{C}$,

$$f(x) = \sum_{k=1}^{\infty} f_n \sin(kx) + \sum_{k=0}^{\infty} f_n' \cos(kx), \quad x \in \mathcal{D}_\rho,$$

which take real values when restricted to \mathbb{R}, and for which the norm

$$\|f\|_\rho = \sum_{k=1}^{\infty} |f_k| \rho^k + \sum_{k=0}^{\infty} |f_n'| \rho^k$$

is finite. The subspace of odd and even functions in \mathcal{C}_ρ will be denoted by \mathcal{A}_ρ and \mathcal{B}_ρ, respectively.

Our first main result concerns the existence of branches of solutions and of bifurcation points.
Theorem 1. The stationary Kuramoto-Sivashinski equation admits 10 pitchfork bifurcation points \((4, 16, 36, 64, A, B, E, F, G, H)\), 4 intersection bifurcation points \((C_\pm, D_\pm)\), 6 fold bifurcation points \((34_\pm, 36_\pm, 49_\pm)\). Such bifurcations are linked by continuous branches of solutions. There exist no other branches bifurcating from the trivial branch when \(\alpha \in [0, 80]\) and no other bifurcations. All such solutions are in \(A_\rho\), with \(\rho = 1/16\). Furthermore, the value of the parameter \(\alpha\) where the bifurcations occur is given in the following table.
<table>
<thead>
<tr>
<th>bifurcation</th>
<th>α</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>pitchfork</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>pitchfork</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>pitchfork</td>
</tr>
<tr>
<td>64</td>
<td>64</td>
<td>pitchfork</td>
</tr>
<tr>
<td>A</td>
<td>16.13985...</td>
<td>reverse pitchfork</td>
</tr>
<tr>
<td>B</td>
<td>22.55606...</td>
<td>reverse pitchfork</td>
</tr>
<tr>
<td>C_{\pm}</td>
<td>36.23390...</td>
<td>intersection</td>
</tr>
<tr>
<td>D_{\pm}</td>
<td>50.90983...</td>
<td>intersection</td>
</tr>
<tr>
<td>E</td>
<td>52.89105...</td>
<td>pitchfork</td>
</tr>
<tr>
<td>F</td>
<td>63.73699...</td>
<td>reverse pitchfork</td>
</tr>
<tr>
<td>G</td>
<td>64.27481...</td>
<td>reverse pitchfork</td>
</tr>
<tr>
<td>H</td>
<td>64.55942...</td>
<td>reverse pitchfork</td>
</tr>
<tr>
<td>34_{\pm}</td>
<td>34.16913...</td>
<td>fold</td>
</tr>
<tr>
<td>36_{\pm}</td>
<td>36.23501...</td>
<td>reverse fold</td>
</tr>
<tr>
<td>49_{\pm}</td>
<td>49.66453...</td>
<td>fold</td>
</tr>
</tbody>
</table>
The second results concerns the stability of stationary solutions under the flow of the full Kuramoto-Sivashinski equation.

Let \(t \mapsto v \in \mathcal{A}_\rho \) be a stationary solution. Then the time evolution of a function \(u = v + h \) is described by the equation

\[
\dot{h} = L_v h + \alpha D(h^2), \quad L_v h = -(4D^4 + \alpha D^2) h + 2\alpha D(vh).
\]

Let \(\ell \) be the number of eigenvalues of \(L_v \) that have a positive real part, and assume that \(L_v \) has no eigenvalues on the imaginary axis. Then the map \(\Phi^1 \) on \(\mathcal{A}_\rho \) has smooth local stable and unstable manifolds at \(v \), with the unstable manifold being of dimension \(\ell \) and tangent at \(v \) to the spectral subspace of \(L_v \) corresponding to the \(\ell \) eigenvalues with positive real part.
Our goal is to determine ℓ for some stationary solutions, e.g. for all solutions belonging to the branches obtained in with $\alpha \in \{10, 20, \ldots, 80\}$.

Theorem 2. For all pairs (α, B) listed in the next table, the Kuramoto-Sivashinski equation admits a stationary solution on the branch B and the unstable manifold at this solution has dimension ℓ.
<table>
<thead>
<tr>
<th>α</th>
<th>B</th>
<th>ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1+</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1−</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>2+</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>2−</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>2+</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>2−</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>$a+$</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>$a−$</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>2+</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>2−</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>3+</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>3−</td>
<td>1</td>
</tr>
</tbody>
</table>
Main ideas of the proofs

We rewrite the equation in the form $F_\alpha(u) = u$,

$$F_\alpha(u) = -\frac{\alpha}{4} D^{-2} u + \frac{\alpha}{4} D^{-3} (u^2),$$

where D^{-1} denotes the antiderivative operator on the space of continuous 2π-periodic functions with average zero, extended to functions with nonzero average by first subtracting their average value.

We focus here on cases where the spectrum of $DF_\alpha(u)$ is bounded away from 1.
We choose a finite dimensional approximation M for the map
$[DF_\alpha(u_0) - I]^{-1} - I$, and then define

$$C_\alpha(u) = F_\alpha(u) - M[F_\alpha(u) - u].$$

Formally, the map C is close to the Newton map for F_α. Thus, our goal is to prove that

$$\|C_\alpha(u_0) - u_0\| < \varepsilon, \quad \|DC_\alpha(u)\| < K, \quad \varepsilon + Kr < r,$$

for some real numbers $r, \varepsilon, K > 0$, and for arbitrary u in a closed ball B of radius r, centered at u_0. Then the contraction principle implies that F has a unique fixed point U in B, and if $M - I$ is invertible, then u is also a fixed point of F and thus a solution.
Proposition 1. Let $N \in \mathbb{Z}$, let $\{(u_i, \varepsilon_i)\} \in A \times \mathbb{R}$, $i = 0, \ldots, 2N$ and
$\{\alpha_i \in \mathbb{R}\}, i = 0, \ldots, N$. Assume that for all $i = 0, \ldots, N$ there exists a unique
solution with $\alpha = \alpha_i$ in $B(u_{2i}, \varepsilon_{2i})$ and that for all $i = 0, \ldots, N - 1$ and all
$\alpha \in [\alpha_i, \alpha_{i+1}]$ there exists a unique solution in $B(u_{2i+1}, \varepsilon_{2i+1})$. Assume also
that for all $i = 0, \ldots, N - 1$
$B(u_{2i}, \varepsilon_{2i}) \cup B(u_{2i+2}, \varepsilon_{2i+2}) \subset B(u_{2i+1}, \varepsilon_{2i+1})$. Then there exists a
continuous branch of solutions linking u_0 with u_{2N}.
For the study of bifurcations, we write the equation as $\mathcal{F}(\alpha, u) = 0$, where

$$\mathcal{F}(\alpha, u) = -u - \frac{\alpha}{4} D^{-2} u + \frac{\alpha}{4} D^{-3} (u^2).$$

The types of bifurcations considered here take place in two dimensional submanifolds of \mathcal{A}_ρ. We will parametrize these surfaces by using the frequency α and the value λ of some coordinate function on \mathcal{A}_ρ.
As a coordinate function, we choose a suitable one-dimensional projection \(\ell \propto 0 \). Then we define a two-parameter family of functions \(u(\alpha, \lambda) \) in \(\mathcal{A}_\rho \) by solving

\[
(I - \ell)F(\alpha, u(\alpha, \lambda)) = 0, \quad \ell u(\alpha, \lambda) = \lambda \hat{u},
\]

where \(\hat{u} \) is a fixed nonzero function in the range of \(\ell \). Our goal is to show that for certain rectangles \(I \times J \) in parameter space, the equation has a smooth and locally unique solution \(u : I \times J \to \mathcal{A}_\rho \). Then locally, the solutions of \(F_\alpha(u) = 0 \) are determined by the zeros of the function \(g \),

\[
g(\alpha, \lambda)\hat{u} = \ell F(\alpha, u(\alpha, \lambda)).
\]
The equation for $u = u(\alpha, \lambda)$ is equivalent to the fixed point equation for the map $F_{\alpha, \lambda}$, defined by

$$F_{\alpha, \lambda}(u) = (I - \ell)F_{\alpha}(u) + \lambda \hat{u}.$$

This fixed point problem is solved by converting it to a fixed point problem for a map $C_{\alpha, \lambda}$, which is obtained from $F_{\alpha, \lambda}$ in the same way that C_{α} was obtained from F_{α}. These estimates imply also that $DF_{\alpha, \lambda}(u)$ is invertible, for all u in the ball being considered. Thus, since $F_{\alpha, \lambda}(u)$ is a polynomial in α, λ, and u, the implicit function theorem guarantees that the solution $u = u(\alpha, \lambda)$ depends smoothly on the parameters α and λ.
This leaves the problem of verifying that a certain type of bifurcation occurs. For the sake of definiteness, we will restrict our discussion here to the case of a pitchfork bifurcation. A sufficient set of conditions for the existence of such a bifurcation is given below. A concrete example of a function g that satisfies these conditions (near the origin) is $(\alpha, \lambda) \mapsto \lambda^3 - \alpha \lambda$.

If f is any differentiable function of two variables, denote by \hat{f} and f' the partial derivatives of f with respect to the first and second argument, respectively.
Let $I = [\alpha_1, \alpha_2]$ and $J = [-b, b]$.

Proposition 2. Let g be a real-valued C^3 function on an open neighborhood of $I \times J$, such that $g(\alpha, 0) = 0$ for all $\alpha \in I$, and

1. $g''' > 0$ on $I \times J$,
2. $g' < 0$ on $I \times J$,
3. $g'(\alpha_1, 0) \pm \frac{1}{2} bg''(\alpha_1, 0) > 0$,
4. $\pm g(\alpha_2, \pm b) > 0$,
5. $g'(\alpha_2, 0) < 0$.

Then $g(\alpha, \lambda) = \lambda G'(\alpha, \lambda)$, and the solution set of $G'(\alpha, \lambda) = 0$ in $I \times J$ is the graph of a C^2 function $\alpha = a(\lambda)$, defined on a proper subinterval J_0 of J. This function takes the value α_2 at the endpoints of J_0, and satisfies $\alpha_1 < a(\lambda) < \alpha_2$ at all interior points of J_0, which includes the origin.
The role of the computer

The proofs are based on a discretization of the problem, carried out and controlled with the aid of a computer.

At the trivial level of real numbers, the discretization is implemented by using interval arithmetic. In particular, a number $s \in \mathbb{R}$ is “represented” by an interval $S = [S^-, S^+]$ containing s, whose endpoints belong to some finite set of real numbers that are representable on the computer. Such an interval will be called a “standard set” for \mathbb{R}.
The collection of all standard sets for \mathbb{R} will be denoted by $\text{std}(\mathbb{R})$. In what follows, a “bound” on a function $g : X \rightarrow Y$ is a map G, from a subset D_G of $\text{std}(X)$ to $\text{std}(Y)$, with the property that $g(s)$ belongs to $G(S)$ whenever $s \in S \in D_G$.

Bounds on the basic arithmetic operation like $(r, s) \rightarrow rs$ are easy to implement on modern computers.

The goal now is to combine these elementary bounds to obtain e.g. a bound G_1 on the norm function on \mathcal{A}_ρ, and a bound G_2 on the map \mathcal{C}. Then, in order to prove the first inequality it suffices to verify that $G_1(G_2(S)) \subset U$, where S is a set in $\text{std}(\mathcal{A}_{\rho}^P)$ containing g_0, and U is an interval in $\text{std}(\mathbb{R})$ with $U^+ < \varepsilon$.
To prove the stability result, we write L_{ν} as a perturbation of a linear operator whose eigenvalues and eigenvectors are known explicitly. Let T and $L = T + A$ be closed linear operators whose spectrum consists of isolated eigenvalues only. Then the following holds.

Proposition 3. Let Ω be a bounded open subset of \mathbb{C}, whose boundary $\partial \Omega$ consists of finitely many rectifiable Jordan curves and avoids the eigenvalues of T. If

$$\|A(T - z)^{-1}\| < 1, \quad \forall z \in \partial \Omega,$$

then T and $L = T + A$ have the same number of eigenvalues (counting multiplicities) in the region Ω, and in its closure.

A proof of this (well known) fact is based on the integral formula

$$P_{\Omega} = \frac{1}{2\pi i} \int_{\Gamma} (\mathcal{L} - z)^{-1} dz = \frac{1}{2\pi i} \int_{\Gamma} (T - z)^{-1} [I + A(T - z)^{-1}]^{-1} dz$$

for the spectral projection P_{Ω} of \mathcal{L}, associated with the eigenvalues of \mathcal{L} in Ω.
This proposition will be applied not to L_v directly, but to the operator

$$\mathcal{L} = E^{-1}L_vE,$$

where $E \simeq I$ is a suitable linear isomorphism of A_{ρ}. Here, and in what follows, $U \simeq V$ means that $U - V$ is finite-dimensional.

Corollary 1. Let $T \simeq L_0$ and $S \simeq L_0$ be linear operators on A_{ρ}, that have no eigenvalues on the imaginary axis. Let $A = \mathcal{L} - T$. If

$$\|AS^{-1}\| < 1, \quad \|S(T - iy)^{-1}\| \leq 1, \quad \forall y \in \mathbb{R},$$

then L_v and T have the same number of eigenvalues in the halfplane $\text{Im}(z) > 0$, and in its closure.
In our proof the isomorphism E is chosen in such a way that \mathcal{L} is close to an operator \mathcal{T} that is block-diagonal, in the sense that all eigenvectors of \mathcal{T} are either Fourier monomials (for real eigenvalues) or a linear combination of two Fourier monomials (for pairs of complex conjugate eigenvalues). In order to simplify our estimates, the operator \mathcal{S} is taken to be diagonal. Given \mathcal{T}, it is easy to find such an operator \mathcal{S} that satisfies $\|\mathcal{S}(\mathcal{T} - iy)^{-1}\| \leq 1$ without being smaller than necessary.