Thoughts on Acceleration for a Muon Collider

J. Scott Berg
Muon Collider Simulations Workshop
15 December 2004
Muon Collider vs. Neutrino Factory

- Muon collider has only a single bunch
- Transverse acceptance
 - Neutrino factory: 30000 μm
 - Muon collider: 50 μm
- Longitudinal
 - Neutrino factory: 150 mm acceptance
 - Muon collider: 68 mm emittance
 - For comparison: 150 mm acceptance would be 1.5σ with this emittance
- The difficulty is clearly going to be the longitudinal emittance
Emittance vs. Acceptance

- What matters to first order for neutrino factories is acceptance
 - The size (in phase space) of the hole that the beam needs to fit into
 - Any distortion to the ellipse gets clipped (square peg/round hole)
 - Square of radius in phase space gets third-order correction from nonlinearities

- What matters for muon colliders is emittance
 - Computed from second order moments
 - Third order moments don’t affect emittance
 - Fourth order moments give lowest order correction from nonlinearities
 - If get too close to dynamic aperture (bucket edge): blow up emittance significantly

- Small emittance growth easier than small acceptance growth, but for given emittance, muon colliders require larger acceptance
Types of Acceleration

- Recirculating Linear Accelerators (RLAs)
- Fixed Field Alternating Gradient (FFAG) Accelerators
- Fast Ramping Synchrotrons
Recirculating Linear Accelerators (RLAs)

- Essentially arbitrarily large longitudinal acceptance
 - Lots of RF available
 - Going off-crest increases bucket height significantly while affecting acceleration little

- Each arc designed separately: get cavity phases right

- Switchyard is the problem
 - Lots of beamlines, but small aperture
 - Small energy spreads and beams may make easier
Fixed Field Alternating Gradient (FFAG) Accelerators

- Get less expensive per unit acceleration at higher energy
- At higher energy, can shift cavity frequency (piezo, ...)
 - Instead of fancy “gutter acceleration,” have something more like standard synchrotron oscillation
 - Longitudinal acceptance ceases to be a problem
- At lower energies, worry about acceptance
 - May be forced to lower frequencies than other designs
- Large aperture beamlines
- Limited energy range: many stages
- Small emittance: nonlinear magnets?
Fast Ramping Synchrotrons

- Stored energy, length \(L \) of magnets with field \(B \) and aperture \(a \):
 \[
 \frac{B^2 L \pi a^2}{2\mu_0}
 \]

- Revolution time, average gradient \(G \):
 \[
 \frac{\Delta E}{q G c}
 \]

- Relate dipole length \(L \) to field:
 \[
 L = \frac{2\pi (pc/q)}{B c}
 \]

- Peak power (\(\Delta E \sim pc \)):
 \[
 \frac{\pi^2 B a^2 G}{\mu_0}
 \]
 - Should add factor of 2 for other magnets
 - Independent of energy!
 - Magnet aperture is critical
 - 1 cm aperture, 1 T field, 6 MV/m gradient, result is 4.7 GW
● Aperture increases at lower energy, power requirement increases

● Acceleration time
 ♦ For 1 TeV, about 0.5 ms total cycle time
 ★ Long time to hold the peak power
 ♦ Note at 1 T, just the bends give a period of 0.07 ms.
 ★ Multiply by 4 at least: only a couple turns!
 ★ Can go to higher fields, but more peak power, still few turns

● With all this RF, can make bucket arbitrarily large

● RF phasing a non-issue at high energy
● Longitudinal acceptance is a significant issue at low energy
● Linac acceptance: 150 mm is already pushing it at 200 MHz
 ♦ Need closer to 1 m for collider
 ♦ Probably can’t even accelerate required acceptance in cooling lattice at 200 MHz
 ♦ Lower frequencies required
● FFAGs also have acceptance problem
 ♦ Probably can’t start FFAGs until higher energy (10 GeV?)
● Working on computing the correct relationship between FFAG parameters and emittance transmitted