Precooling with Gas in the “Front-End”

In collaboration with:

• Roland Johnson (Muons, Inc.)
• David Neuffer (FNAL)
Introduction

- Muons, Inc.:
 - High-Pressure Gas-Filled RF Cavities
 - Helical 6D Cooling Channel (HCC)

- Challenges:
 - Breakdown suppression
 - High Gradients within high magnetic fields
 - High Gradients at low frequency
 - Radiation limits
Motivation

- What else can we do?
 - Capture beam into RF early
 - Capture large fraction of beam with RF
 - RF phase rotation over short distance
 - Simultaneous precooling

- What problems can we face?
 - Pion interaction with gas
 - Pion decay within RF buckets
Plan

- Simple comparison:
 - Neutrino Factory-like baseline (No RF or Gas)
 - Neutrino Factory-like baseline w/ HP Gas (100 atm)
 \[\lambda_l = 59.4 \, \text{m} \]
 - 201.25 MHz RF w/ HP Gas
 - “Back-of-the-envelop” Phase Rotation
 (i.e., “Phase Rotation by Dummies”)
Production

- 80 cm long, 1 cm radius Carbon Target
- 1 MW / 8 GeV protons
- 20 T capture solenoid
- 100 mrad tilt angle
- 7.5 cm radius beam pipe
Adiabatic Matching

- Adiabatically decrease field strength to 5 T
- Increase beam pipe radius to 15 cm (*matches HCC*)
- Short matching section (5 m)
Initial Distribution

Energy Spectrum

Time Distribution

- 74% Pions / 26% Muons
- 0.14 π / 0.05 μ per POT
Baseline Examples

- Neutrino Factory-like Decay Channel:
 - 50 m of 5 T solenoid
 - No RF cavities
 - No HP gas

- Immediate Capture into RF cavities:
 - 50 m of 5 T solenoid
 - 201.25 MHz / 50 MV/m / 20 cm RF cavities
 - No HP gas
HP Gas Examples

- Neutrino Factory-like Decay Channel with gas:
 - 50 m of 5 T solenoid
 - *No RF cavities*
 - 100 atm / Room Temp. GH₂

- Immediate Capture into RF cavities with gas:
 - 50 m of 5 T solenoid
 - 201.25 MHz / 50 MV/m / 20 cm RF cavities
 - 100 atm / Room Temp GH₂
What are the losses due to RF?

Muon Transmission

![Graph showing Muon Transmission](image-url)

- **Normalized Number of Positive Muons**
- **Distance down Channel [m]**

Legend:
- Vacuum
- Vacuum RF
What are the losses due to gas?

Muon Transmission

![Graph showing normalized number of positive muons vs distance down channel in meters with 'Vacuum' and 'HPG' lines]
And if we do everything at once?

Muon Transmission

![Graph](image_url)

- Normalized Number of Positive Muons vs. Distance down Channel [m]
- Lines represent different conditions:
 - Vacuum
 - Vacuum + RF
 - HPG
 - HPG + RF
Do we see any cooling?

Muon Transverse Emittance

![Graph showing transverse emittance vs. distance down channel in meters.](image)
Is it worth writing home about?

Transverse “Merit Factors”
Phase Rotation

- What do we need to phase rotate initial beam?
 - Large gradient (50 MV/m)
 - Low frequency (50 MHz)
 - HPG (100 atm / Room Temp.)

- New problems:
 - Large gradient \rightarrow Large energy spread
 - Large energy spread \rightarrow Large tune spread?

\[Q_s \sim V^{\frac{1}{2}} E^{-\frac{1}{2}} \]
Initial Beam

Longitudinal Phase Space
This should to be fun…

- The beam is not ideal for rotation…
 - Enormous energy spread
 - Still a fairly long time spread
 - Strong correlation between energy and time
- But wait…
 - Use the gas to lower the energy via dE/dx loss
 - Move low energy particles up with RF
 - Use reference momentum lower than peak
Well, that’s something!

Muon Transmission in the 200-300 MeV/c Momentum Range
Final Beam (after 2 m)

Longitudinal Phase Space

- X-axis: Time of Flight [s]
- Y-axis: Momentum [MeV/c]
Put it all together

- Phase rotation:
 - 50 MHz / 50 MV/m / 0.2 m RF cavities
 - 2 m of transport

- Dump it into RF:
 - 201.25 MHz / 50 MV/m / 0.2 m RF cavities
 - 48 m of transport
Transmission…

Muon Transmission

Normalized Number of Positive Muons

Distance down Channel [m]

Transmission…

Muon Collider Simulations Workshop / 12-14-2004 / Slide 12

kpaul@muonsinc.com
Cooling…

Muon Transverse Emittance

![Graph showing transverse emittance over distance down the channel.

Distance down Channel [m]

- Vacuum
- Vacuum RF
- HPG
- HPG RF
- HPG RF with Rotation

Transverse Emittance [m radian]
Merit...

Transverse “Merit Factors”

Normalized Transmission * Emittance vs. Distance down Channel [m]
Summary

- **HP Gas:**
 - Losses are significant, but…
 - Losses may be manageable

- **Phase rotation:**
 - Difficult, but…
 - Interesting / Useful / Possible?

- Lot’s of room for improvement!